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The data sets

(Dis)Similarity table : matrix D with dimension (n, n)

I Distances
I Dissimilarities
I Similarities

Objects-variables table: matrix X with dimension (n, p)

I p variables measured on n objects
I quantitative variables : n points x1, . . . , xn in Rp

I qualitative variables



Clustering structures

Structures

I Partitions
I Overlapping Classes
I Density classes
I Fuzzy Partitions

z =


z11 z12 z13
z21 z22 z23
z31 z32 z33
z41 z42 z43
z51 z52 z53


Problem

x z
3.5 2.3 0.3 4.2 ? ? ?
2.2 1.4 2.9 1.3 ? ? ?
4.2 1.7 2.2 1.1 ? ? ?
2.5 2.3 0.3 4.2 ? ? ?
9.2 2.4 2.9 1.3 ? ? ?
6.2 1.2 2.2 1.1 ? ? ?

Estimation of the clustering matrix z from the data x



Hierarchy

Sequence of embedded partitions
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CAH algorithm

Defining a distance between clusters : agregation criterion

I Single link : D(A, B) = min{d(i , i ′), i ∈ A et i ′ ∈ B}
I Complete link : D(A, B) = max{d(i , i ′), i ∈ A et i ′ ∈ B}
I Mean link : D(A, B) =

P
i∈A

P
i′∈B d(i,i ′)

nA.nB

Algorithm

I Initialisation :
I Stating from the singletons
I Distances between singletons

I For a number of clusters greater than > 1
I Merging of the nearest clusters
I Updating of the distance table



Hierarchy and ultrametric distance

I CAH : algorithmic approach
I Opimal properties ?
I Equivalence between indexed hierarchy ultrametric

distance
I Problem : find the ultrametric δ minimising ∆(δ, d) where ∆

is a dissimilarity measure between distances
I Partial solutions

I CAH Dmin : ultrametric smaller than d optimal for any ∆
I CAH Dmoy : ultrametric near optimum for ∆ such that

∆(d , δ) =
∑

i,i′∈Ω

(d(i , i ′)− δ(i , i ′))2



Ward method

I Data : quantitative object-variables and d Euclidian
distance

I Algorithm : CAH with Ward criterion

D(A, B) =
nAnB

nA + nB
d2(gA, gB)

I Local optimality : merging the 2 clusters minimising the
within-cluster intertia

I Often used with a PCA and the k -means algorithm



An example: crabs data set
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Partitions: k -means type algorithm

I Within-cluster type inertia criterion :

W (P, L) =
∑

k

∑
i∈Pk

||x i − λk ||2

where L = (λ1, . . . , λg) with λk ∈ Rp (in the standard
situation.

I Algorithm: alterned minimisation of W ′

I It leads to a stationary sequence of partitions decreasing in
W (P, L)

I L can take many forms (points, axes, points and distances,
densities, ...) to lead to many algorithms.



Motivations of Model-based cluster analysis

Classical clustering
Use of more or less empirical methods being based on metric
criteria : k -means, hierarchical algorithm of Ward, ...

Difficulties
I Choice of metric and criterion
I Selection of the method and the number of classes

One solution
Embed clustering in the framework of probabilistic clustering
models:

I Objects to be classified: sample of a random vector
I Clustering obtained by analyzing the density of this vector



Different approaches of model-based cluster analysis

Non-parametric

I Multimodality
I Hight-density clusters

Parametric
I Mixture model
I Poisson cluster process in spatial statistics



Finite mixture models: principle

I Mixture model clustering consists of assuming that the
data come from a source with several subpopulations.

I Each subpopulation is modeled separately.
I The overall population is a mixture of these

subpopulations.
I The resulting model is a finite mixture model.



Finite mixture models: definition

The general form of a mixture
model with g groups is

f (x) =
∑

k

πk fk (x)

I πk : mixing proportions
I fk (.): densities of components
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The parameterisation of the group densities depends of the
nature (continuous or discrete) of the observed data.



Finite mixture models: an hidden structure model

I The mixture model is an incomplete data structure model
I The complete data are

y = (x, z) = (y1, . . . , yn) = ((x1, z1), . . . , (xn, zn))

where the missing data are z = (z1, . . . , zn) = (zik )
I z i = component of i
I zik = 1 if i arises from group k and 0 otherwise

z defines a partition P = (P1, . . . , Pg) of the observed data x
with Pk = {i | zik = 1}.



Finite mixture models: generative model

Knowing
I the proportions π1, . . . , πg and
I the component distributions fk ,

data are drawn according to the following scheme
I zi ∼M(π1, . . . , πg) (multinomial distribution)
I x i ∼ distribution of density fzi



Mixture model for cluster analysis

Two approaches:

Estimation method
I Estimating the mixture parameters
I Computing of tik , conditional probability that observation x i

comes from cluster k using the estimated parameters.
I Assigning each observation to the cluster maximizing tik

(MAP : Maximum a posteriori)

Clustering approach
Simultaneous estimation of both the mixture parameter and the
underlying partition



Quantitative data: multivariate Gaussian Mixture
(MGM)

Multidimensional observations x = (x1, . . . , xn) in Rd are
assumed to be a sample from a probability distribution with
density

f (x i |θ) =
∑

k

πkφ(x i |µk ,Σk )

where
I πk : mixing proportions
I φ(.|µk ,Σk ) : Gaussian density with mean µk and variance

matrix Σk .

This is the most popular model for clustering of quantitative
data.



Qualitative Data: latent class model (LCM)

I Observations to be classified are described with d
qualitative variables.

I Each variable j has mj response levels.

Data x = (x1, . . . , xn) are defined by

x i = (x jh
i ; j = 1, . . . , d ; h = 1, . . . , mj)

with {
x jh

i = 1 if i has response level h for variable j
x jh

i = 0 otherwise.



The standard latent class model (LCM)

Data are supposed to arise from a mixture of g multivariate
multinomial distributions with pdf

f (x i ;θ) =
∑

k

πkmk (x i ;αk ) =
∑

k

πk
∏
j,h

(αjh
k )x jh

i

where θ = (π1, . . . , πg , α11
1 , . . . , αdmd

g ) is the parameter of the
latent class model to be estimated :

I αjh
k : probability that variable j has level h in cluster k ,

I πk : mixing proportions

Latent class model is assuming that the variables are
conditionnally independent knowing the latent clusters.



First Interest of MBC

Many versatile or parsimonious models available



The variance matrix eigenvalue decomposition (1)
Decomposition Σk = λkDt

kAkDk

I λk = |Σk )|1/d : component volume
I Dk = matrix of eigenvectors of Σk : component orientation
I Ak = diagonal matrix of normalised eigenvalues :

component shape

Example in R2

I Dk rotation matrix defined by θ

I Ak diagonal matrix defined by
a and 1/a

I Equidensity ellipse

a!

a
1/a
0

0A = cos
-sin

"
" cos

sin"
"

D = 

a
!

µ

"



28 different models (1)

I For each component : proportion, volume, shape,
orientation

I By allowing some of these quantities to vary between
components, we get different and easily interpreted
models

I The general family: Assuming equal or free proportions,
volumes orientations and shapes leads to 16 models.

[πkλk Dk Ak ], ... [πλDA]

I The diagonal family: Assuming that the component
variances matrices are diagonal leads to 8 models.

[πkλk Bk ], ... [πλB]

I The spherical family: Assuming that the variance matrices
are proportional to the identity matrix leads to 4 models.

[πkλk I] [πλk I] [πkλI] [πλI]



28 different models(2)



LMC: a Reparameterization

For each cluster k and each variable j :

(αj1
k , . . . , α

jmj
k ) −→ (aj1

k , . . . , ajmj
k , εj1

k , . . . , ε
jmj
k )

where binary vector aj1
k , . . . , ajmj

k provides the mode levels in
cluster k for variable j

ajh
k =

{
1 if h = arg maxh αjh

k
0 otherwise

and the εjh
k can be regarded as scattering values :

εjh =

{
1− αjh

k if ajh
k = 1

αjh
k if ajh

k = 0.

Example: (0.7, 0.2, 0.1) −→ (1, 0, 0, 0.3, 0.2, 0.1).



Five latent class models

Using this form, it is possible to impose various constraints to
the scattering parameters εjh

k .

The models
I [εjh

k ] (standard latent class model): the scattering is
depending upon clusters, variables and levels.

I [εj
k ]: the scattering is depending upon clusters and

variables but not upon levels.
I [εk ]: the scattering is depending upon clusters, but not

upon variables.
I [εj ]: the scattering is depending upon variables, but not

upon clusters.
I [ε]: the scattering is constant over variables and clusters.



Second interest of MBC

Many algorithms to estimate the mixture model
from different points of view



EM: maximum likelihood estimation

Maximisation of the loglikelihood

L(θ) = ln

(∏
i

f (x i ;θ)

)
=
∑

i

ln

(∑
k

πkϕk (x i ;αk )

)

The EM algorithm is the reference tool to derive the ML
estimates in a mixture model.



Algorithme EM

Algorithm

I Initial Step : initial solution θ0

I E step: Compute the conditional probabilities tik that
observation i arises from the k th component for the current
value of the mixture parameters:

tm
ik =

πm
k ϕk (x i ;α

m
k )∑

` πm
` ϕ`(x i ;α

m
` )

I M step: Update the mixture parameter estimates
maximising the expected value of the completed likelihood.
It leads to weight the observation i for group k with the
conditional probability tik .

I πm+1
k = 1

n

∑
i tm

ik
I αm+1

k : Solving the Likelihood Equations



EM for the multivariate Gaussian mixture

αk = (µk ,Σk )

µm+1
k =

1∑
i tm

ik

∑
i

tm
ik x i

Σm+1
k =

1∑
i tm

ik

∑
i

tm
ik (x i − µm+1

k )(x i − µm+1
k )′



Features of EM

I EM is increasing the likelihood at each iteration
I Under regularity conditions, convergence towards the

unique consistent solution of likelihood equations
I Easy to program
I Good practical behavior
I Slow convergence situations (especially for mixtures with

overlapping components)
I Many local maxima or even saddle points
I Quite popular: see the McLachlan and Krishnan book

(1997)



Classification EM

The CEM algorithm, clustering version of EM, estimate both the
mixture parameters and the labels by maximizing the
completed likelihood

L(θ; x, z) =
∑
k ,i

zik log πk f (xi ;αk )

Algorithm

I E step: Compute the conditional probabilities tik that
observation i arises from the k th component for the current
value of the mixture parameters.

I C step: Assign each observation i to the component
maximising the conditional probability tik (MAP principle).

I M step: Update the mixture parameter estimates
maximising the completed likelihood.



Features of CEM

I CEM aims maximising the complete likelihood where the
component label of each sample point is included in the
data set.

I Contrary to EM, CEM converges in a finite number of
iterations

I CEM provides biased estimates of the mixture parameters.
I CEM is a K-means-like algorithm.



CEM and standard clustering algorithms

model distance criterion remarks
π, λI d2(x i , µk ) trace(W ) k -means, (Ward, 1963)
π, λk I d2(x i ,µk )

λk
+ d ln(λk )

∑
k nk ln tr(Wk

nk
) Scott & Symons 1971

π, λB d2
B−1(x i , µk ) diag(W ) classification + weight

π,Σ d2
Σ−1(x i , µk ) |W | Friedman & Rubin, 1967

W =
∑
i,k

zik (x i − x̄k )(x i − x̄k )′



Stochastic EM

I E step: Compute the conditional probabilities tik that object
i arises from the k th component for the current value of the
mixture parameters.

I S step: Assign each object i at random to one of the
component according to the distribution defined by
(ti1, . . . , tig .

I M step: Update the mixture parameter estimates
maximising the completed likelihood.



Features of SEM

I SEM generates a Markov chain whose stationary
distribution is (more or less) concentrated around the ML
parameter estimator.

I Thus a natural parameter estimate from a SEM sequence
is the mean of the iterates values obtain after a burn-in
period (SEMmean).

I An alternative estimate is to consider the parameter value
leading to the largest likelihood in a SEM sequence
(SEMmax).

I Different variants (Monte Carlo EM, Simulated Annealing
EM) are possible.



Third interest of MBC

Finite mixture models can be compared
and assessed in an objective way



Model selection

I Choosing a parsimonious model in a collection of models.
I The problem is to solve the bias-variance dilemma.

I A too simple model leads to a large approximation error.
I A too complex model leads to a large estimation error.

I Standard criteria of model selection are AIC and BIC
criteria.

I Both criteria are penalized likelihood criteria



The AIC criterion

AIC is approximating the deviance of a model m with νm free
parameters

d(x) = 2[log p(x)− log p(x|m, θ̂m)]

on a single test observation X . The penalization is an
estimation of nD(X )− E(d(x)) where

D(X ) = 2E [log p(X )− log p(X |m, θ̂m)]

is the expected deviance on X .

Assuming that the data arose from a distribution belonging to
the collection of models in competition, AIC is

AIC(m) = 2 log p(x|m, θ̂m)− 2νm.



The BIC criterion

BIC is a pseudo-Bayesian criterion. It is approximating the
integrated likelihood of the data

p(x|m) =

∫
p(x|m, θm)π(θm)dθm,

π(θm) being a prior distribution for parameter θm.

BIC is
BIC(m) = log p(x|m, θ̂m)− νm

2
log(n).

This approximation is appropriate when one and only one of the
competing models is true.



Choosing a mixture model in a density estimation
context

Despite theoretical difficulties in the mixture context
I Simulation experiments (see Roeder & Wasserman 1997)

show that BIC works well at a practical level to choose a
sensible Gaussian mixture model,

I See also the good performances of a cross-validated
likelihood criterion proposed by Smyth (2000).

Choosing a clustering model
Since BIC does not take into account the clustering purpose for
assessing m, BIC has a tendency to overestimate g regardless
of the separation of the clusters.



The ICL criterion

ICL is a BIC-like approximation of the integrated completed
likelihood

p(x, z | m) =

∫
Θm

p(x, z | m, θ)π(θ | m)dθ,

ICL(m) = log p(x, ẑ|m, θ̂)− νm

2
log n,

where the missing data have been replaced by their most
probable value for parameter estimate θ̂.

Roughly speaking criterion ICL is the criterion BIC penalized by
the estimated mean entropy

E(m) = −
∑
k ,i

tm
ik log tm

ik ≥ 0.



Behavior of the ICL criterion

Because of this additional entropy term, ICL favors model
giving rise to partitioning the data with the greatest evidence.

I ICL appears to provide a stable and reliable estimate of g
for real data sets and also for simulated data sets from
mixtures when the components are not too much
overlapping.

I But ICL, which is not aiming to discover the true number of
mixture components, can underestimate the number of
components for simulated data arising from mixture with
poorly separated components.



Contrasting BIC and ICL
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Typical solutions proposed by BIC (left) (92%) and ICL (right)
(88%) with the following features: Gaussian mixture with free
variance matrices, n = 400.
The criteria select g and the form of the variance matrices from
their eigenvalue decomposition.

I BIC outperforms ICL from the density estimation point of
view...

I But from the cluster analysis point of view ?...



Fourth interest of MBC

Special questions can be tackled in a proper way in the MBC
context



Variables selection

I Model (Maugis, Celeux and Martin-Magniette 2009):

x ∈ RQ 7→ fclust(xS|g, m, α) freg(xU |r , a+xRβ, Ω) find(xW |`, γ, τ)

I clustering variables (S): Gaussian Mixture density
I redundant variables (U): linear regression of xU with xR

I independent variables (W ): Gaussian density

I Graphical representation:



Robust Cluster Analysis

I Using multivariate Student distributions instead of
Multivariate Gaussian distributions lead to attenuate the
influence of outliers (McLachlan & Peel 2000).

I Including in the mixture a group from a uniform distribution
allows to take into account noisy data (DasGupta & Raftery
1998).

I Shrinking the group variance matrix in a proper way (see
for instance Ciuperca, Idier & Ridolfi 2002)



Some other special questions solved with MBC

I Imposing specific constraints as groups with known
distributions.

I Dealing with missing data at random in a proper way (Hunt
& Basford 1999, 2001).

I Mixture of Factor Analyses could be efficient to deal with
high dimensional data sets.

I Simple and efficient models in semi-supervised
Classification (see for instance Ganesalingam &
McLachlan 1978, . . . ).

I Assuming the variables are conditionally independent
knowing the groups makes valid, in a simple way, the
treatment of continuous and discrete data with the same
MBC.



Softwares

I Many free softwares for finite mixture analysis are
available.

I Some of them (EMMIX, MCLUST) are more devoted to a
multidimensional context in a cluster analysis or
classification purpose.

MIXMOD software
I Since 2001, C++ library including most of the features

described in this talk, Matlab interface
I Website: www.mixmod.org
I In 2012, mixmodGUI: a Graphical User Interface for

MIXMOD

I In 2012, Rmixmod package: a set of functions to use
MIXMOD in R environment



Combining components for clustering: mixtures of
mixtures

Limits of ICL
I ICL criterion takes into account the clustering purpose, but

still lies on the principle ’1 cluster = 1 mixture component’.
I ICL provides a more relevant clustering, but the fit is

degraded in comparison with BIC.

An answer: combining components

I Start from the BIC solution
I Combine components by merging iteratively the two

clusters with the highest entropy.
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2 clusters are chosen, which one try to combine...
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The same is done with each pair of clusters.
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The pair of clusters for which the resulting entropy is minimal is
actually combined.

This is our 5 clusters solution.
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We get a mixture of mixtures:

f P∪G(·) =
∑

k 6= P, G

πk fk (·)

+ πP∪G fP∪G(·)

with fk (·) = φ(·; µ̂k , Σ̂k ) ∀k ,
πP∪G = πP + πG,
fP∪G = πP

πP+πG
fP + πG

πP+πG
fG.



From this new 5-clusters solution, 2 clusters may be combined
to get a 4-clusters solution, and so on...
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Solutions obtained by combining:

I provide a good fit, good approximation properties of the
Gaussian mixture models;

I allow to choose the number of clusters.

The number of clusters can be chosen from an elbow rule on
the entropy criterion.


