What matters in differences between life trajectories? A comparative review of sequence dissimilarity measures

Matthias Studer^{1,2} & Gilbert Ritschard^{1,2}

¹LIVES NCCR

²Institute of Demography and Socioeconomics University Geneva

FORS – SSP Methods and Research meetings, University of Lausanne, December 1, 2015

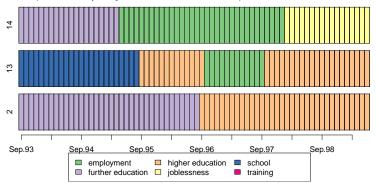
Outline

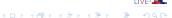
- Sequence analysis
- 2 Reviewing distances
- Simulations
- 4 Conclusion

Outline

- Sequence analysis
- 2 Reviewing distances
- Simulations
- 4 Conclusion

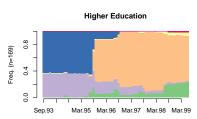
Sequence Analysis in the Social Sciences

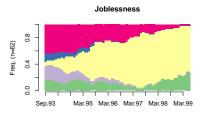

- SA aims to describe trajectories.
 - Professional carriers.
 - Cohabitational life courses.
 - History of organizations.
- Typology of the trajectories.
- Common questions in sequence analysis.
 - What are the typical patterns of trajectories?
 - How are the trajectories related to explanatory factors?
 - How is a given outcome related to a previous trajectory?



Sequences analysis: common strategy

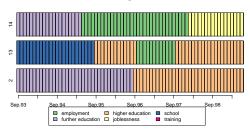
• Code processes/trajectories as state sequences.


• Compute distances between sequences, i.e. Optimal matching.



Typology of processes

• Reveals main patterns.



Optimal Matching

- "Optimal Matching": distance measure between sequences.
 - Definition: number of operation needed to transform one sequence into another one.
 - Substitution.
 - Insertion-deletion.
 - Operation cost can be weighted.

Criticism

- Many critics (Levine, 2000; Wu, 2000; Elzinga, 2003).
- Lack a sociological interpretation.
- High number of parameters.
- Parameters values set by the user.
- Timing and sequencing of sequences are not sufficiently taken into account.

New developments

- New developments as answers to criticisms (Aisenbrey and Fasang, 2010):
 - New distances measures.
 - New methods to automatically compute parameters values.
- Result in many distances measures.
 - Seven article in Sociological Method and Research.
 - Each having at least one parameter.
- Scattered development.
 - Answer to one critic at a time.
 - Only compare to classic OM.

New developments

- New developments as answers to criticisms (Aisenbrey and Fasang, 2010):
 - New distances measures.
 - New methods to automatically compute parameters values.
- Result in many distances measures.
 - Seven article in Sociological Method and Research.
 - Each having at least one parameter.
- Scattered development.
 - Answer to one critic at a time.
 - Only compare to classic OM.

Choosing a distance

- SA users common questions:
 - How to choose distance measure?
 - How to set the parameters?
- Aim: Help SA users to choose a distance and set the parameters.
 - Review all distances measures.
 - Provide guidelines.

Choosing a distance

- SA users common questions:
 - How to choose distance measure?
 - How to set the parameters?
- Aim: Help SA users to choose a distance and set the parameters.
 - Review all distances measures.
 - Provide guidelines.

Outline

- Sequence analysis
- 2 Reviewing distances
- Simulations
- 4 Conclusion

Review of distance measures properties

Measure	Type	Description	Properties					Parameters		
	DisAttEdt		Metric	Eucl	T.warp	S.dep	Ctxt	Subst.	Indels	Others
CHI2, EUCLID	×	Distance between per period state distributions	×	×	×					Number of periods K
CHI2fut (Rousset)	×	Position-wise state distances based on shared future	×	×			×			Time-lag weighting function
NMS (Elzinga)	×	Based on number of matching subsequences	×	×	×		×			
SVRspell (Elzinga & Studer)	×	Based on number of matching spell subsequences with spell-length weights	×	×	×	×	×	User		Subsequence length weight a spell duration weight b
HAM (Hamming)	× ×	Number of mismatches	×	x^b						
generalized	×	Sum of mismatches with state-dependent weights	ת	x ^{b,c}		×		User		
DHD (Lesnard)	×	Sum of mismatches with position-wise state-dependent weights				×	×	Data		
OM	×	Minimum cost for turning x into y using theoretically defined costs	ת		×	×		User	Mult	
LCS / OM(1,2) / Levenshtein-II	× ×	Based on length of LCS / Number of indels	×		×					
feature	×	Costs based on state features	×		×	×		Features	Single	State features
future (new)	×	Costs based on similarity between conditional state distributions q periods ahead	×		×	х		Data	Single	Forward lag q
trate	×	Costs based on transition rates			×	×		Data	Single	Transition lag q
opt ^{na} (Gauthier)	×	Costs adjusted to increase similarity between similar sequences	n		×	×		Data	Single	Similarity rate
indels, indelslog (new)	×	State dependent indels based on inverse or log inverse state frequencies.	×		×	×			Auto	
OMloc (Holister)	×	Context dependent indel costs			×	×	x	User	Auto	Expansion cost e, Context g
OMslen (Halpin)	×	Costs weighted by spell length	×		×	×	×	User	Mult ^{na}	Spell length weight h
OMspell (new)	×	OM between sequences of spells	ת		×	×	×	User	Mult ^{na}	Expansion cost e
OMstran (new)	×	OM between sequences of transitions	ת		×	×	×	User	Mult	Origin-transition trade-off w Transition indel cost function

^a If costs fulfil the triangle inequality. ^b Squared Euclidean distance. ^c If costs are squared Euclidean distances. ^{na} Not available in TraMineR. ⁿCan generate negative dissimilarities.

Review

- Theoretical review.
- Many distance measures.
- Highlight mathematical distances properties.
- Many non-metric dissimilarities.
 - 5 out of 7 distance published in SMR do not satisfy triangle inequality.
 - 2 with serious issues (Wrong algorithm or negative distances).
- Overlooked mathematical properties?

Reviewing distances

- How to choose a distance measure?
- How to evaluate a distance measure?
- A distance measure defines how two sequences are compared.
- Which aspects should we use to compare trajectories?
 - Sociological issue.
 - Five aspects based on Settersten and Mayer (1997) and Billari et al. (2006).

Reviewing distances

- How to choose a distance measure?
- How to evaluate a distance measure?
- A distance measure defines how two sequences are compared.
- Which aspects should we use to compare trajectories?
 - Sociological issue.
 - Five aspects based on Settersten and Mayer (1997) and Billari et al. (2006).

Reviewing distances

- How to choose a distance measure?
- How to evaluate a distance measure?
- A distance measure defines how two sequences are compared.
- Which aspects should we use to compare trajectories?
 - Sociological issue.
 - Five aspects based on Settersten and Mayer (1997) and Billari et al. (2006).

- Experienced states.
 - Similar sequence should have some states/events in common.
- Distribution.
 - Total exposure time.
- Timing.
 - Age in a state/time an event occurs.
- Spell duration.
 - Consecutive time spent.
- Sequencing.
 - Order of the states/events in the sequence.

- Experienced states.
 - Similar sequence should have some states/events in common.
- Distribution.
 - Total exposure time.
- Timing.
 - Age in a state/time an event occurs.
- Spell duration.
 - Consecutive time spent.
- Sequencing.
 - Order of the states/events in the sequence.

- Experienced states.
 - Similar sequence should have some states/events in common.
- Distribution.
 - Total exposure time.
- Timing.
 - Age in a state/time an event occurs.
- Spell duration.
 - Consecutive time spent.
- Sequencing.
 - Order of the states/events in the sequence.

- Experienced states.
 - Similar sequence should have some states/events in common.
- Distribution.
 - Total exposure time.
- Timing.
 - Age in a state/time an event occurs.
- Spell duration.
 - Consecutive time spent.
- Sequencing.
 - Order of the states/events in the sequence.

- Experienced states.
 - Similar sequence should have some states/events in common.
- Distribution.
 - Total exposure time.
- Timing.
 - Age in a state/time an event occurs.
- Spell duration.
 - Consecutive time spent.
- Sequencing.
 - Order of the states/events in the sequence.

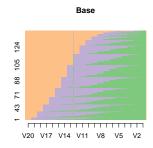
Outline

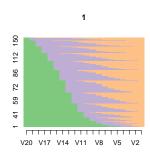
- Sequence analysis
- 2 Reviewing distances
- Simulations
- 4 Conclusion

Simulations

- The sensitivity to each aspect vary between distance measures.
- Use simulation to measure this sensitivity.
- Aim: describe the behaviour of each distance/configuration of parameter.
- Generate two groups of sequences.
 - Groups differ on one aspect.
 - Measure ability of each distance to discriminate between groups.
 - Based on discrepancy analysis (Pseudo- R^2).
- Randomize untested aspects: groups should only differ on one aspect.

Simulations


- The sensitivity to each aspect vary between distance measures.
- Use simulation to measure this sensitivity.
- Aim: describe the behaviour of each distance/configuration of parameter.
- Generate two groups of sequences.
 - Groups differ on one aspect.
 - Measure ability of each distance to discriminate between groups.
 - Based on discrepancy analysis (Pseudo- R^2).
- Randomize untested aspects: groups should only differ on one aspect.

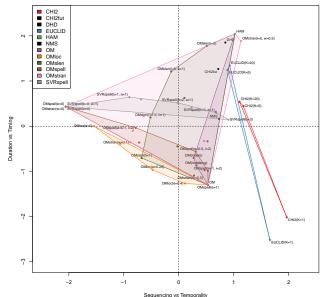


Sequencing Simulation

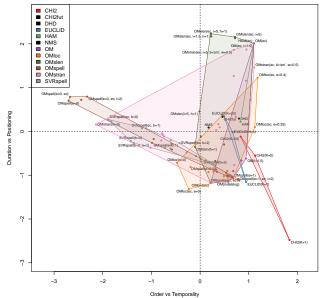
- Generate two groups of sequences.
 - Group 1: x = (A, B, C)
 - Group 2: $\mathbf{x} = (C, B, A)$
 - Durations and timings random in both groups.
- 2'000'000 sequences.

Sets of simulations

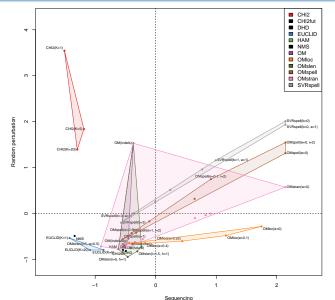
- State based:
 - Sequencing:
 - Difference of patterns.
 - Random small perturbations.
 - Timing: age at the beginning of a spell.
 - Duration: duration of a spell.
- Event based (based on three events e_1, e_2, e_3)
 - Sequencing: order of underlying events.
 - Timing: age at a given event.
 - Duration: "spacing" between events.
- Simulations chosen among those considered in Studer (2012).


Distance included in analysis

Distance	Configurations						
Distribution-based	EUCLID(K=1, 5, 20) (Euclidean), CHI2(K=1, 5, 20), (χ^2 -distance between distributions within K periods), CHI2fut (metric based on distributions of subsequent states)						
Hamming	HAM (simple and generalized Hamming), DHD (Dynamic Hamming)						
Optimal Matching (OM)	$OM,OM(i{=}1.5),OM(trate),OM(indelslog),OM(indels),OM(future)$						
Localized Optimal Matching (OMloc)	OMloc(e=0, 0.1, 0.25, 0.4)						
Spell-Length-Sensitive Optimal Matching (OMslen)	$OMslen(h{=}1,i{=}1,1.5,5),OMslen(i{=}1,1.5,5)$						
Optimal Matching of Spell Sequences (OMspell)	$OMspell(\mathbf{e}{=}0, 0.1, 0.5, 1) \text{, OMspell}(\mathbf{e}{=}0, 0.1, 0.5, 1, i{=}2)$						
Optimal Matching of Transition Sequences (OMstran)	$\begin{array}{lll} & \text{OMstran}(\text{w}{=}0,0.1,0.5), \text{OMstran}(\text{i}{=}1.5, \text{w}{=}0.1,0.5), \\ & \text{OMstran}(\text{i}{=}5, \text{w}{=}0.1,0.5), \\ & \text{OMstran}(\text{tm}{=}\text{raw}) \end{array}$						
Number of Matching Subsequences (NMS)	NMS						
Subsequence Vectorial Representation (SVRspell)	$SVRspell(\mathbf{b}{=}0,1,2,3) \text{, } SVRspell(\mathbf{b}{=}0,1,2,3,\mathbf{a}{=}1)$						



Scores for state-based simulations



Scores for event-based simulations

Random perturbation vs sequencing

Outline

- Sequence analysis
- 2 Reviewing distances
- Simulations
- 4 Conclusion

Conclusions

- Similar overall scores for all distances, except NMS.
- Strange results for non-metric distances:
 - Localized OM.
 - Duration-sensitive OM.
 - "Optimized costs".
- Advice: avoid non-metric distances.
- Limited effect of data-driven substitution costs.
 - does the added complexity worth it?
- Alternatives are available.

Guidelines

- Similar overall scores implies that a choice is needed.
- Which aspects to focus on?
- Family destandardisation:
 - Pattern change (rise of unmarried cohabitation).
 - Changes in age norms (age at marriage)
 - Changes in spacing (marriage-first child).
- Definition of the research question.

Guidelines

- Timing:
 - Hamming distances.
- Duration:
 - Optimal matching.
 - Optimal matching of spells.
 - Distribution-based distances.
- Sequencing (depending of sensitivity to small perturbation).
 - SVRspell (Very sensitive).
 - Optimal matching of spells (in between).
 - Optimal matching of transitions (less sensitive).
- Intermediary position:
 - SVRspell.
 - Optimal matching of transitions.
 - Optimal matching of spells.

Other uses

- By using one distance measure sensitive to each aspect.
 - Distinction stemming from each aspect.
 - Structuration of the data according to each aspect.
- In practice, aspects may be correlated.

Contributions

- Review of sequence dissimilarities.
- Guidelines.
- Methodology to evaluate sequence dissimilarities.
- New contribution:
 - Two new distances measures (OMspell and OM of transition)
 - Mostly sensitive to sequencing.
 - New strategies to set costs.
- All distances measures will be included in TraMineR software.
- Currently in the development R package "seqdist2".

Sequence analysis

Studer, M. and G. Ritschard (2015). What matters in differences between life trajectories: a comparative review of sequence dissimilarity measures. *Journal of the Royal Statistical Society: Series A (Statistics in Society)*. DOI: 10.1111/rssa.12125.

References I

- Aisenbrey, S. and A. E. Fasang (2010). New life for old ideas: The "second wave" of sequence analysis bringing the "course" back into the life course. *Sociological Methods and Research 38*(3), 430–462.
- Billari, F. C., J. Fürnkranz, and A. Prskawetz (2006). Timing, sequencing, and quantum of life course events: A machine learning approach. *European Journal of Population* 22(1), 37–65.
- Elzinga, C. H. (2003). Sequence similarity: A non-aligning technique. *Sociological Methods and Research 31*, 214–231.
- Levine, J. (2000). But what have you done for us lately. Sociological Methods & Research 29 (1), pp. 35–40. English

References II

- Settersten, Richard A., J. and K. U. Mayer (1997). The measurement of age, age structuring, and the life course. *Annual Review of Sociology* 23, 233–261.
- Studer, M. (2012). Étude des inégalités de genre en début de carrière académique à l'aide de méthodes innovatrices d'analyse de données séquentielles. Thèse de doctorat n° 777, Faculté des sciences économiquese et sociales, Université de Genève.
- Wu, L. L. (2000). Some comments on 'Sequence analysis and optimal matching methods in sociology: Review and prospect'. *Sociological Methods Research* 29(1), 41–64.

