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Course Materials

http://www.iser.essex.ac.uk/teaching/degree/stephenj/ec968/index.php

reading list

lecture notes

do-it-yourself course on how to apply survival analysis to empirical
data, illustrated using Stata
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Introduction and Specification

Introduction

Distinctive features of survival time data → distinctive methods

Part I. Specification

Basic Concepts

- the hazard rate, survivor function, failure function, etc.

Functional forms for the hazard rate function
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Estimation

Part II. Estimation

Non-parametric estimators of the survivor function and hazard rate
function

Continuous time multivariate regression models

Discrete time multivariate regression models

Cox’s proportional hazard regression model

Part III. Additional Topics

Unobserved heterogeneity (frailty)

Independent competing risks models

. . .
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Introduction

Introduction
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Introduction What Survival Analysis is about

Introduction to Survival Analysis

What Survival Analysis is about

Modelling of {time-to-event | transition | survival time | duration,
event history} data

Consider a particular life-course domain, partitioned into a number of
mutually-exclusive states at each point in time.

With the passage of time, individuals move (or do not move) between
states.

Examples: . . .
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Introduction What Survival Analysis is about

lifecourse domains state at each t (mutually exclusive)

Marriage

married
cohabiting
separated
widowed
divorced
single never-married

Receipt of security benefit(s)

receiving benefit x
receiving benefit y
receiving x and y
receiving neither x or y

Housing Tenure

owned outright
owner with mortgage
renter – social housing
renter – private landlord
private renter
other

Paid work

employed
self-employed
unemployed
inactive
retired

Table: Given a domain, which states to distinguish, and how many?
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Introduction What Survival Analysis is about

Transition Patterns

For each domain, the transition patterns for each individual are
characterised by:

the time spent within each state;

the dates of any transitions made between states (if any)

Example: hypothetical marital history with 3 states for a given individual
(adapted from Tuma, and Hannan, 1984, Fig. 1.). . .
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Introduction What Survival Analysis is about

  

Hypothetical marriage
history

State

Dead

Married

Not
married

t1 t2 t3 t4
Time, t

Length of time spent within each state ∼ length of horizontal line
Spells within a given state marked out by dates (start, and end)
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Introduction What Survival Analysis is about

More generally, we could have survival time data for:

a large number of subjects (e.g. individuals, firms, ) → usefulness of
statistical models in order to describe data and to predict spell
lengths, and also have

other information about the subjects (their characteristics) →
explanatory variables for multivariate modelling
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Introduction What Survival Analysis is about

This course is about the methods used to model this sort of data.

Note the complexity of the hypothetical marital history (and more
generally):

multi-state transitions

repeat spells

→ simplify and narrow the focus:
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Introduction What Survival Analysis is about

The Focus

Survival time within a single state

Single spell observed for each subject

plus various simplifying assumptions:

→ No state dependence: the chances of making a transition from current
state do not depend on transition history prior to entry to current state

→ No initial conditions issues: Entry to state being modelled is treated as
exogeneous (otherwise we would have to model the chances of having
arrived in the state in the first place)

→ Stationary process: Model parameters are fixed constant, or can be
characterised using explanatory variables, or parametrically
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Introduction Some notable features

Distinctive models are used for survival time data modelling because of the
datas special features:

censoring (and truncation)

time-varying explanatory variables (“covariates”)

with two approaches to measuring time (continuous and discrete)
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Introduction Some notable features

Survival time data collection methods

Stock sample: Survey those currently in the state (and determine
entry date = spell start date)

Inflow sample: survey those entering a state, and follow them until
some common pre-specified date or e.g. until spell ends

Outflow sample: survey those leaving a state (and determine when
entered)

Population sample: survey population and determine dates of spells
experienced
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Introduction Some notable features

Longitudinal survey instruments for getting spell data

Administrative records (e.g. current recipients, or ever a recipient
within some observation window) + interview

Sample survey (often one-off) of population, with retrospective
questions, e.g. Women & Employment Survey, Families and Working
Lives Survey, BHPS (waves 2, 3)

Panel and cohort surveys follow a population’ spell info built up from
repeated obs on persons, e.g. BHPS, GSOEP, ECHP
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Introduction Some notable features

Censoring

An individual’s survival time in a state is censored if the date of transition
into the state, or the date of transition out of the state, is not known
exactly (only that before some date, or after some date).
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Introduction Some notable features

Censoring, ctd.

Right censoring: spell end date not observed (only know that total time in
state ≥ time from start of spell to end of observation period

Left censoring: spell start date not observed (cf. biostatisticians’
definition: know that end date before observation date, but
not exactly when)

Intervall Censoring: Event time falls in certain interval (Li ,Ri )
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Introduction Some notable features

Truncation

Whereas censoring means that we don’t know the exact length of a
completed spell in total, truncation refers to whether or not we observe a
spell or not in our data (sample selection on dependent variable):
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Introduction Some notable features

Truncation

Left truncation (“delayed entry”): only those surviving a sufficient
amount of time are included in the sample (e.g. stock sample with
follow-up).

Right truncation: only those with a transition by a particular time are
included in the sample (e.g. sample from the outflow from a state).

SHP Methodological Workshop (PFerreira) Survival Analysis using the SHP July 2016, UoLausanne 19 / 244



Introduction Some notable features

Truncation

Example for Left truncation
(Klein, Moeschberge, 2003): Survival study of residents in retirement
center. Individual must survive to a sufficient age to enter retirement
center.

Example for Right truncation
Lagakos et al. (1988) AIDS study: Contaminated blood transfusion,
1.4.1978, waiting time to develop AIDS by 30.6. 1986. Infected ind. who
have not developed AIDS are excluded.
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Introduction Some notable features

Censored and truncated spells: examples

  

Person
#1

#2

#3

#4

#5

#6

← Past Interview
date

Future →

Suppose population survey. At interview date, respondents asked about
start date of current spell if in progress, or start and end dates of most
recent spell if not in state then.
Spells for #1, #2, #4, #6 are right-censored
Left-censoring? (Suppose didn’t ask about state before some fixed date in
past)
Left- and right-truncation?
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Introduction Some notable features

The nature of the survival time data: continuous versus
discrete

Is a transition out of current state something that can occur at any
instant of time, or only in terms of discrete points? (Cf
unemployment exits; machine cycles). Related to the process
determining transitions.

How are survival times recorded? As exact dates or only within
intervals of time (hence grouped or banded data = ’interval
censoring’)?
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Introduction Some notable features

Types of explanatory variable

Characteristics of subject (person, firm) vs. characteristics of
socio-economic environment

→ not an issue analytically; may be empirically

Fixed versus time-varying covariates (TVCs), where TVCs may vary
with (i) survival time in state, &/or (ii) calendar time. (E.g. UK
social assistance. Cf. local unemp rate)

→ analytics and interpretation easier if no TVCs; estimating models with
TVCs means data re-organisation (’episode-splitting’)
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Introduction Why distinctive statistical methods?

Econometric methods for survival time data: some
motivation

Why not use OLS?

→ Regress each survival time (Tor logT ) on covariates

Problems with OLS:

→ (right-)censoring of spell data
→ time-varying covariates
→ ’structural’ modelling
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Introduction Why distinctive statistical methods?

OLS and right-censored spell data

Suppose that log survival times Ti are a linear function of a single
characteristic Xi , i = 1, . . . ,N :

log(Ti ) = α + βXi + ei ; and α > 0, β < 0

  

log(T)

X

o

o

α

slope β 

OLS: choose estimators a, b, that minimise the sum of the squared residuals (ei )
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Introduction Why distinctive statistical methods?

Suppose prevalence of right-censoring greater at longer durations
than shorter durations:

(a) Exclude censored spells altogether from OLS
estimation → sample data cloud less dense
everywhere, but especially so higher values
of log(T )→ estimated slope not as negative
as true slope, i.e. over-estimate.
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Introduction Why distinctive statistical methods?

  

Sample OLS line

log(T)

X

Like sample selection bias. Cf ’Heckman 2-stage’: OLS like omitting
lambda term
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Introduction Why distinctive statistical methods?

Suppose prevalence of right-censoring greater at longer durations
than shorter durations:

(b) Treat censored spells as if they were com-
plete → under-recording, especially so at
higher values of log(T ) = like non-random
mis-measurement of depvar → estimated
slope not as negative as true slope, i.e. over-
estimate.
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Introduction Why distinctive statistical methods?

  

Sample OLS line

x

o

x

o

X

log(T)
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Introduction Why distinctive statistical methods?

OLS and TVCs

How can OLS handle them, given that each observation (one spell length)
contributes one observation to the regression?

If one were to choose one value of the TVC for each person, which one
would one choose?

That just before the transition (but this varies by person, and what
about censored observations?)

Might use value of TVC at start of spell? (Consistent definition for all
spell, but now fixed covariate and lose information)
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Introduction Why distinctive statistical methods?

OLS and ‘structural modelling’ of longitudinal processes

Most behavioural models – of e.g. job search, marital search, etc. – are
framed in terms of decisions to do something (→ transition event), and
not a spell length per se
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Introduction Why distinctive statistical methods?

Why not use a binary dependent variable model?

Use logit (probit, ) regression of whether or not experience a transition or
not against characteristics? (This would deal with right-censored obs.)

But would take no account of the differences in length of time each
person was at risk of experiencing the transition, and so loses
information (when left, if did so).

How to handle TVCs?
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Introduction Why distinctive statistical methods?

Implications

We need methods recognising the longitudinal (passage of time)
nature of the spell data, the ability to handle censored (and
truncated) spells, and also time-varying covariates

Solution = use estimation methods other than OLS (typically ML),
and also re-organise the data set (so that get likelihood right, and can
handle TVCs)

Throughout, we need tools for summarising survival time distributions
(hazard rate, survivor and failure functions)
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Basic Concepts

Basic Concepts
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Basic Concepts

Basic Concepts

Probability distribution functions

Probability density functions

Survivor functions (new?!)

Hazard rate functions (new?!)

We need them

to describe distributions of survival times (cf. description of income
distributions). Special forms – data are not Normal.

to fit models of the distributions, using specific functional forms

Continuous & discrete time Relationships between concepts
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Basic Concepts Continous Time

Continuous Time

The length of a spell is a realisation of a continuous random variable T
with

probability density function (PDF): f(t)

NB: areas under PDFs are probabilities

area(rectangle) = height X base → f (s) = height = area/base = Prob/∆t
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Basic Concepts Continous Time

Failure function, F(t)

cumulative density function (CDF), probability distribution function, or “failure function”:

F (t) = Pr(T ≤ t) = area under f(t)

(PDF) up to t=T

f(t) = slope of CDF at t: f (t) = lim
∆t→0

Pr(t ≤ T ≤ t + ∆t)

∆t
=
∂F (t)

∂t
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Basic Concepts Continous Time

Survivor Function, S(t)

Pr(T > t) = 1− F (t) ≡ F (t) ≡ S(t)

The survivor function equals
1 – failure function [NB different notations]

S(t) is probability of survival (i.e. remaining in state) at least t units
of time since entry at t = 0

Note that:

f (t) = ∂F (t)
∂t = −∂S(t)

∂t

SHP Methodological Workshop (PFerreira) Survival Analysis using the SHP July 2016, UoLausanne 38 / 244



Basic Concepts Continous Time

Survivor Function, S(t)

S(t) and F(t) are probabilities, so 0 ≤ S(t) ≤ 1, and 0 ≤ F (t) ≤ 1

S(0) = 1, S(∞) = 0, ∂S/∂t < 0

f(t) is not a probability (its a density); f (t) ≥ 0
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Basic Concepts Continous Time

Hazard rate function, θ(t)

θ(t) = f (t)
1−F (t) = f (t)

F (t)
= f (t)

S(t)

Hazard rate at t equals the ratio of the pdf at t to the survivor function at
t.

Properties of hazard rate:

∀θ(t) ≥ 0, but may be > 1!

NB given an expression for S(t), equivalently for F(t), one could derive
f(t), and thence hazard rate θ(t). [More on links below.]
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Basic Concepts Continous Time

Interpretation of θ(t)

θ(t)∆t = f (t)∆t
S(t)

for some tiny interval of time ∆t.

Numerator of RHS is like a probability (recall areas under PDFs =
probabilities):

f (t)∆t ≈ Pr(leaving the state in the interval [t, t + ∆t]

So, the expression for the hazard rate looks a bit like a conditional
probability.

Recall the rules of conditional probability:

Pr(A | B) = Pr(A ∩ B)/Pr(B)
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Basic Concepts Continous Time

Interpretation of θ(t)

∀θ(t): conditional failure rate

Examples:

Given that you smoked for t periods, what is the failure rate
(‘likelihood’) to quit in subsequent period?

Prisoner has been released for t months, failure rate to return to
prison in subsequent months?

Being unemployed for t months, what is the failure rate to find a job
in the near future?
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Basic Concepts Continous Time

Interpretation of θ(t)

Pr(A | B) = Pr(A ∩ B)/Pr(B)
= Pr(B | A)Pr(A)/Pr(B)

Now let A: “leaving the state in the interval [t, t + ∆t]”
B: “survival to time t”

So,
Pr(leaving in interval [t, t + ∆t] conditional on survival until t)
= Pr(A | B) = Pr(A)/Pr(B), since Pr(B | A) = 1

So, the continuous-time hazard rate has similarities to a conditional
probability, but isnt a ‘genuine’ probability!
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Basic Concepts Continous Time

Conditional versus unconditional ‘probabilities’

Contrast between

1 conditional: θ(t)∆t

and

2 unconditional: f (t)∆t
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Basic Concepts Continous Time

Conditional versus unconditional ‘probabilities’

For example, compare

A1 Probability for a person who has been unemployed for 120 days of
leaving unemployment on the 121st day, versus

A2 Probability for persons entering unemployment of having a spell
length of 121 days;

B1 Probability of dying at age 12 for someone who is aged 12, versus

B2 Probability for a new-born baby of dying at age 12.
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Basic Concepts Continous Time

Relationship between hazard and survivor functions

Given any functional form for the hazard rate θ(t), one can derive the
functional form for the survivor function S(t) [and vice versa]:

θ(t) = f (t)
1−F (t)

= −∂[1−F (t)]/∂t
1−F (t)

= ∂{− ln[1−F (t)]}
∂t

= ∂{− ln[S(t)]}
∂t

using the fact that ∂ ln[g(x)]/∂x = g ′(x)/g(x), and S(t) = 1− F (t).
Now integrate both sides of the expression: . . .
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Basic Concepts Continous Time

from θ(t) to S(t), ctd.

∫ t
0 θ(u)du = − ln[1− F (t)] |

(t
0

)
But F(0)=0, and ln(1) = 0,

so, . . .
ln[1− F (t)] = −

∫ t
0 θ(u)du, i.e.

S(t) = exp
(
−
∫ t

0 θ(u)du
)

S(t) = exp[−H(t)]

where H(t) = − ln[S(t)] is the integrated hazard function.
Thus, in principle, given any form for θ(t), we can derive S(t).
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Basic Concepts Discrete Time

Discrete time concepts

The time scale may be

a Continuous time process but survival times measured in bands
(grouped data; interval censoring)

b Intrinsically discrete (e.g. time to machine breakdown measured as #
machine cycles)

Consider case (a) first, and suppose underlying continuous time survival
time T recorded in disjoint intervals (need not be of same length):
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Basic Concepts Discrete Time

(a) Grouped data

Intervals of time, indexed by 0 = a0, a1, a2, a3, . . . , . . . , where the intervals
are [0 = a0, a1], (a1, a2], (a2, a3], . . . , (ak−1, ak =∞).

Survivor function at start of jth interval (just after end interval j-1):
S(t) = 1− F (t) = Pr(T > aj−1).

Probability of exit from state in jth interval (interval density):
Pr(T ∈ (aj−1, aj ]) = F (aj )− F (aj−1) = S(aj − 1)− S(aj )
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Basic Concepts Discrete Time

Discrete hazard rate of exit during jth interval: h(aj)

h(aj) = Pr(aj−1 < T ≤ aj | T > aj−1)

=
Pr(aj−1<T≤aj )
Pr(T>aj−1)

=
S(aj−1)−S(aj )

S(aj−1)

= 1− S(aj )
S(aj−1)

h(aj) is a probability (cf. continuous time hazard), and so 0 ≤ h(aj) ≤ 1

Easiest to consider case in which every interval is of unit length so
recorded duration intervals become (t − 1, t] with t = 1, 2, 3, . . . (positive
integer); T ∈ (t − 1, t]
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Basic Concepts Discrete Time

Discrete time hazard rate and survivor functions

Alternatively (and perhaps easier), instead of indexing intervals using
the date at end of each interval, let us index each interval directly.

Thus refer to a spell of length j (i.e. one lasting to end of the j th

interval)

Survivor function: Probability of survival to the end of interval j is
the product of the probabilities of not experiencing the event in each
of the intervals up to and including the current one, i.e. product of
discrete hazards:
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Basic Concepts Discrete Time

Discrete time survivor and failure functions

Sj = S(j) = (1− h1)(1− h2) . . . (1− hj)

=

j∏
k=1

(1− hk)

Sj = S(j) now refers to a discrete time survivor function.
Cf. S(aj) which is a continuous time survival function (with an argument
which is a date - an instant of time - rather than an interval of time)

– NB: a matter of notation, since
S(j) = S(aj)

Discrete time failure function:
Fj = F (j) = 1− S(j)
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Basic Concepts Discrete Time

Discrete time hazard rate and density functions

Discrete time hazard rate for jth interval can be written as

h(j) = f (j)
S(j−1)

where f(j) is the discrete time density function, given by:

f (j) = hjSj−1

= hj

j−1∏
k=1

(1− hk)

=
hj

1− hj

j∏
k=1

(1− hk)

(Later we use this expression a lot when deriving expressions for sample
likelihoods.)
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Basic Concepts Discrete Time

(b) Discrete time: time intrinsically discrete

Survival time T is now a discrete random variable with probabilities

fj = f (j) = Pr(T = j)

where j = 1, 2, 3, . . . is is the set of positive integers.

NB j now indexes ‘cycles’ (not unit ‘intervals’), but we can use same
notation.

Discrete time survivor function:

Sj = S(j) = (1− h1)(1− h2) . . . (1− hj)

=

j∏
k=1

(1− hk)
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Basic Concepts Discrete Time

(b) time intrinsically discrete, ctd.

Discrete time hazard at j, h(j), is conditional probability of event at j
(with conditioning on survival until completion of the previous cycle, j1):

h(j) = Pr(T = j | T ≥ j)

= f (j)
S(j−1)

Discrete failure function:

Fj = F (j) = 1− Sj

= 1−
j∏

k=1

(1− hk)
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Basic Concepts Discrete Time

(b) time intrinsically discrete, ctd.

Discrete density function:

f (j) = hjSj−1

= hj

j−1∏
k=1

(1− hk)

=
hj

1− hj

j∏
k=1

(1− hk)

NB: Same expressions as in unit-interval grouped data case
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Basic Concepts Discrete Time

Analogy between discrete and continuous time expressions

Discrete time:

log S(j) =

j∑
k=1

log(1− hk)

For ‘small’ hk , log(1− hk) ≈ −hk
which implies:

log S(j) = −
j∑

k=1

hk

Contrast with continuous time case:

log S(t) = −H(t) = −
∫ t

0 θ(u)du

As hk → 0, the discrete expressions → continuous time counterparts. (Cf.
sums of discrete hazards and integrations of continuous hazards.)
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Functional Forms

Functional Forms of the
Hazard rate
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Functional Forms Choosing a specification

Criteria for choice of specification

Given 1:1 relationships between hazard and density, failure, and
survivor functions, we could specify our models in terms of any one of
these

But typically done in terms of the hazard rate function (more closely
related to the underlying behavioural processes)
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Functional Forms Choosing a specification

Criteria for choice of hazard rate function

Shape that is empirically relevant, or suggested by theoretical models

→ likely to differ between applications (cf. human mortality,
unemployment spell lengths, failure times of machine tools)

Specification with convenient mathematical properties

→ e.g. closed form expressions for survivor function, and summary
statistics such as mean, median duration

Trade-off between parametric functional forms and more flexible
ones?

→ tractability versus fit?
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Functional Forms Choosing a specification

Taxonomy of specifications

Continuous time versus discrete time models

→ differences in the assumptions about the survival time metric (whether
underlying process, or way the data are recorded)

Proportional Hazard (PH) versus Accelerated Failure Time (AFT)
versus Proportional Odds models

→ differences in interpretation of a model and its parameters
→ some models have the PH property; others the AFT one.
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Functional Forms Choosing a specification

Continuous vs. discrete

Continuous time parametric

→ Log-logistic*
→ Log-normal
→ Gompertz
→ Generalized Gamma

Continuous time semi-parametric

→ Piecewise Constant Exponential (PCE)
→ [Cox’s model]*

Discrete time (par. & semipar.)

→ Logistic*
→ Complementary log-log (‘cloglog’)*

* focused on in lectures (for others, see Lecture Notes)
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Functional Forms Continuous time specifications

Introducing differences in characteristics

To allow for differences in characteristics to enter the hazard rate
function, define

β′X ≡ β0 + β1X1 + β2X2 + . . . βkXk

and
β*′X ≡ β∗0 + β*1X1 + β*2X2 + . . . β*kXk
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Functional Forms Continuous time specifications

Introducing differences in characteristics, ctd.

The βs (and β*) are parameters (later to be estimated) and the
elements of the X vector summarise observed characteristics

For the moment, suppose that X does not vary with survival time (or
calendar time).

→ Assumption relaxed later (and we also consider effects of unobserved
characteristics)
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Functional Forms Continuous time specifications

Weibull model
(continuous time)

θ(t,X ) = αtα−1 exp(β′X )
= αtα−1λ

where λ ≡ exp(β′X ), and exp(.) is the exponential function.

λ is a scaling factor: larger λ⇒ larger hazard, at each t

α > 0 is the shape parameter :

α = 1 Exponential model

hazard rate constant over time

α > 1 hazard monotonically increases with survival time

α < 1 hazard monotonically decreases with survival time
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Functional Forms Continuous time specifications

Weibull hazard function

Variations in α, for fixed λ:
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Functional Forms Continuous time specifications

Weibull hazard function, ctd.

Variations in λ, for fixed α:
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Functional Forms Continuous time specifications

Gompertz hazard function
(continuous time)

θ(t,X ) = λ exp(γt)
log θ(t,X ) = β′X + γt

I.e. log (hazard) is linear in survival time, where

→ λ ≡ exp(β′X ) > 0 (i.e. parameterization as per Weibull model)

The larger λ is, cet. par., the larger the hazard rate.

γ is the shape parameter. [Not the same as the loglogistic shape parameter!]

γ > 0 hazard monotonically increasing in t.

γ = 0 hazard constant for all t (Exponential)

γ < 0 hazard monotonically decreasing in t.
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Functional Forms Continuous time specifications

Gompertz hazard function, ctd.
(continuous time)

γ > 0

γ = 0

γ < 0

λ=exp(β'X)

θ(t,X)

t
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Functional Forms Continuous time specifications

Loglogistic hazard function
(continuous time)

θ (t,X ) = ψ
1
γ t(

1
γ−1)

γ

[
1+(ψt)

1
γ

]
where

ψ ≡ exp(−β*′X ) > 0 is a scale factor [reason for changing parameterisation

apparent later].

The larger ψ is, cet. par., the lower the hazard rate.

γ > 0 is the shape parameter :

γ ≥ 1 hazard monotonically decreases in t.

γ < 1 hazard rises, then falls monotonically.
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Functional Forms Continuous time specifications

Loglogistic hazard function, ctd.
(continuous time)
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Functional Forms Continuous time specifications

Lognormal hazard function
(continuous time)

θ(t,X ) =

1
tσ
√

2π
exp

[
− 1

2

{
ln(t)−µ
σ

}2
]

1−Φ
(

ln(t)−µ
σ

)
where µ ≡ β*′X

The larger µ is, cet. par., the lower the hazard rate function.

σ > 0 is a scale parameter

Similar shape to loglogistic (γ < 1) hazard.
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Functional Forms Continuous time specifications

Lognormal hazard function, ctd.
(continuous time)

  

 θ(t,X)

t

µ= 0, σ = 0.5

µ= 0, σ = 1
µ= 1, σ = 1
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Functional Forms Continuous time specifications

Generalized Gamma hazard function
(continuous time)

Flexible but complicated functional form

Encompasses others as special cases (useful for specification testing)

Depends on two parameters:

→ κ, σ

κ = 1 Weibull model

κ = 1, σ = 1 Exponential model

κ = 0 Lognormal model
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Functional Forms Continuous time specifications

Piecewise constant Exponential (PCE) hazard
(continuous time)

Allows flexibility in shape (of a sort).
Hazard constant within (user-specified) intervals, but may differ between
them:

  
0 tτ1 τ2 τ3 τ4

 θ(t,X)
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Functional Forms Continuous time specifications

Piecewise constant Exponential (PCE) hazard,ctd.
(continuous time)

Hazard constant within (user-specified) intervals, but may differ between
them.

θ(t,X ) =


θ1 exp(β′X ) t ∈ (0, τ1]

θ2 exp(β′X ) t ∈ (τ1, τ2]
...

...

θK exp(β′X ) t ∈ (τK−1, τK ]

Expression for θ(t,X ) may be re-written as:
exp[log(θ1) + β′X ] t ∈ (0, τ1]

exp[log(θ2) + β′X ] t ∈ (τ1, τ2]
...

...

exp[log(θK ) + β′X ] t ∈ (τK−1, τK ]
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Functional Forms Continuous time specifications

PCE model, ctd.

With further rewriting,

θ(t,X ) =


exp(λ̃1) t ∈ (0, τ1]

exp(λ̃2) t ∈ (τ1, τ2]
...

...

exp(λ̃K ) t ∈ (τK−1, τK ]

Thus, PCE model equivalent to having interval-specific intercept
terms in the overall hazard rate, θ(t,X )

Simple example of a model with time-varying covariates.
(Straightforward to allow X to vary with time too.)
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Functional Forms Continuous time specifications

Coxs model
(continuous time)

Hazard rate has general form

θ(t,X ) = θ0(t) exp(β′X )
= θ0(t)λ

where θ0(t), the ‘baseline hazard’ function, can take on any shape
(hence ‘semi-parametric’ model)

Parameters β estimable, but baseline hazard function not identified.

More on this model in a separate lecture later on
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Functional Forms Continuous time specifications

Interpreting models (1): proportional hazards (PH)

PH models = ‘multiplicative hazard’ models = ‘log relative hazard’
models (for reasons, see below)

All PH models satisfy a separability condition:

θ(t,X ) = θ0(t) exp(β′X )
⇒ log[θ(t,X )] = log[θ0(t)] + β′X

where

θ0(t) baseline hazard function depending on t, but not X.
Summarises the pattern of duration dependence.

exp(β′X ) non-negative function of X , but not t. (Ensures θ > 0. In principle,

other functions might be specified, but this is the one virtually always used.)
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Functional Forms Continuous time specifications

PH model again

Sometimes you see PH specification written differently

θ(t,X ) = θ0(t) exp(β′X )

⇒ if X = 0:
θ(t,X | X = 0) = θ0(t) exp(β0) ≡ θ∗0(t)

⇒ θ(t,X ) = θ∗0(t)λ

where λ ≡ β1X1 + β2X2 + . . .+ βkXk

θ∗0(t): baseline hazard function (again).

Issue is whether or not to include the intercept term (fixed and
common to each person) in baseline hazard or in the scale factor
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Functional Forms Continuous time specifications

PH model interpretations

Absolute differences in X imply proportionate differences in hazard (at
each t):

For some t = t, and for two persons i and j with characteristics vectors Xi

and Xj ,

θ(t,Xi )
θ(t,Xj )

= exp(β′Xi − β′Xj)

Equivalently, in log relative hazard form:

log
[
θ(t,Xi )
θ(t,Xj )

]
= β′(Xi − Xj)
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Functional Forms Continuous time specifications

PH model interpretations, (ctd.)

Each regression coefficient βk summarises the proportional effect on
the hazard of a unit change in the corresponding covariate Xk :

βk = ∂ log θ(t,X )/∂Xk

NB This proportional effect does not vary with survival time. (βk does not
vary with t.)
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Functional Forms Continuous time specifications

PH model interpretations, (ctd.)

Elasticity of the hazard with respect to Xk

= ∂ log[θ(t,X )]/∂[log(Xk)] , or

Xk∂ log θ(t,X )/∂Xk = βkXk

If covariate measured in logs: Xk ≡ log(Zk), then it follows that βk is the
elasticity of the hazard with respect to Zk .
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Functional Forms Continuous time specifications

PH model interpretations, (ctd.)

Proportionate change in the hazard given a change in a dummy variable
covariate from zero to one (more precisely Xik = 0 to Xjk = 1), with all
other covariates held fixed, i.e.

Hazard ratio for covariate k = exp(βk)
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Functional Forms Continuous time specifications

PH model interpretations, (ctd.)

Differences in characteristics imply a scaling of the common ‘baseline
survivor function’.

S(t,X ) = exp
[
−
∫ t

0 θ(u)du
]

= exp
[
−λ
∫ t

0 θ0(u)du
]

= [S0(t)]λ

given a ‘baseline survivor function’

S0(t) ≡ exp
[
−
∫ t

0 θ0(u)du
]
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Functional Forms Continuous time specifications

PH model interpretations, (ctd.)

Ditto for integrated hazard function H(t) = ln S(t) :

H(t) = λH0(t)

where H0(t) =
∫ t

0 θ0(u)du . Hence,

ln[H(t)] = β′X + ln[H0(t)]

‘Parallel lines’ specification check for PH
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Functional Forms Continuous time specifications

Interpreting models (2): accelerated failure time (AFT)
models

AFT models assume a linear relationship between log of completed
(latent) survival time T and characteristics X :

ln(T ) = β*′X + z , or

Y = µ+ σu, or

(Y − µ)/σ = u

[GLM or -log-linear model- formulation]

where Y ≡ ln(T ), µ ≡ β*′X , and u = z/σ is an ‘error’ term with density
function f(u), and σ > 0 is a scale factor

SHP Methodological Workshop (PFerreira) Survival Analysis using the SHP July 2016, UoLausanne 85 / 244



Functional Forms Continuous time specifications

AFT models, ctd.

Different specifications for the distribution of the error term u lead to
different models of the distribution of T :

u ∼ Normal ⇒ Lognormal model
u ∼ Logistic ⇒ Loglogistic model
u ∼ Extreme Value ⇒ Weibull (and Exponential)

models
u ∼ 3-parameter Gamma ⇒ Generalized Gamma model

NB Recall our opening discussion of the problems with modelling T or log(T ) using OLS

(implicitly assuming Normal error). Above indicates that the problems are

(a) censoring (not all T observed), and

(b) Normal not necessarily appropriate.

SHP Methodological Workshop (PFerreira) Survival Analysis using the SHP July 2016, UoLausanne 86 / 244



Functional Forms Continuous time specifications

‘AFT’ interpretation

Letψ ≡ exp(−β*′X ) = exp(−µ). Then,
ln(Tψ) = z .

Term ψ acts like a time scaling factor:

ψ > 1 Failure is accelerated (survival time shortened).

→ It is as if the clock ticks faster (time scale for someone
with characteristics X is Tψ, whereas for someone with
X = 0 , time scale is T.

ψ < 1 Failure is decelerated (survival time lengthened).

→ It is as if the clock ticks slower.

Can also see time-scaling property in terms of the survivor function: . . .
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Functional Forms Continuous time specifications

AFT interpretation, ctd.

General definition of survivor function:

S(t,X ) = Pr [T > t | X ]

If we have an AFT model, then:

S(t,X ) = Pr [Y > ln(t) | X ]

= Pr [exp(σu) > t exp(−µ)]
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Functional Forms Continuous time specifications

AFT interpretation, ctd.

Define ‘baseline survivor function’ S0(t) for case X = 0, in which case
exp(−µ) = exp(−β∗0) ≡ ψ0

Now,

S0(t) = Pr [T > t | X = 0]
= Pr [exp(σu) > tψ0], or

S0(s) = Pr [exp(σu) > sψ0], any s.

Now substitute s = t exp(−µ)/ψ0 in S0(t)⇒

S(t,X ) = S0[t exp(−µ)] = S0[tψ]

NB Longevity example: ‘If one year for a dog = 7 years for a human’s (dogs age 7 times faster).

Dog’s survivor function = S0(tψ); human’s = S0(t); ψ = 7.
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Functional Forms Continuous time specifications

AFT interpretation, ctd.

Each regression coefficient β∗k summarises the proportional effect on
survival time T to a unit change in corresponding covariate Xk :

β∗k = ∂ ln(T )
∂Xk

Elasticity of latent survival time with respect to
Xk , ∂ ln[(T )]/∂[ln(Xk)], is β∗kXk .

If covariate measured in logs: Xk ≡ log(Zk ), then β∗k is the elasticity of survival time with

respect to Zk .
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Functional Forms Continuous time specifications

AFT interpretation, ctd.

Given log-linear specification for T in an AFT model, absolute differences
in characteristics imply proportionate differences in survival times (cf. PH

models: proportionate differences in hazards!)

log(Ti/Tj) = β∗
′
(Xi − Xj)

Proportionate change in T given a one unit change in Xk , with all other
covariates held fixed, i.e.

Time ratio for covariate k = exp(β∗k)
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Functional Forms Continuous time specifications

The Weibull model is the only model that has PH and
AFT properties

Proof of this requires showing that the Weibull functional form is the only
one that satisfies the PH and AFT restrictions:

S(t) = [S0(t)]λ = S0[tψ]

i.e.

[exp(−tα)]λ = exp(−[t exp(−µ)]α)

Relationships between Weibull AFT coefficients (β∗k) and PH (βk)
coefficients :

β∗k = −σβk = −βk/α, for each k

I.e. AFT coefficients of opposite sign to corresponding PH ones, and σ = 1/α
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Functional Forms Continuous time specifications

Model summary: PH, AFT

Model PH AFT

Exponential

Weibull

Log-logistic

Lognormal

Gompertz

Generalized Gamma

NB ‘PH’ and ‘AFT’ refer to model interpretation, not to differences in
estimation.

Time-varying covariates can be incorporated in these models
straightforwardly. [See Lecture Notes.]

Stata can be used to estimate all the models; you can choose to
report coefficients or hazard ratios for PH models; coefficients or time
ratios for AFT models.
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Functional Forms Continuous time specifications

Weibull Model of U.N. Peacekeeping Missions

Green et al. (1998), Policy Studies Journal

Data on duration of U.N. peacekeeping mission, 1948-2001

Binary covariates indicate types of conflict

1 Civil war

2 Interstate conflict

3 Internationalized civil war
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Functional Forms Continuous time specifications

Weibull Model of U.N. Peacekeeping Missions (ctd)

545454N

=0.81

(0.10)

=1.24

(0.15)

Shape 

parameter

-1.40

(0.51)

1.74

(0.62)

1.64

(0.50)

Interstate 

conflict
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(0.38)

-1.10

(0.45)

-1.16

(0.36)

Civil war

-3.46

(0.50)

4.29

(0.27)

4.35 

(0.21)

Constant

Weibull
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Weibull

AFT

Exponen

-tialVariable
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Functional Forms Continuous time specifications

Interpretation

PH Interpretation PH Interpretation Each regression coefficient βk
summarises the proportional effect on the hazard of a unit
change in the corresponding covariate Xk :

βk = ∂ log θ(t,X )/∂Xk

AFT Interpretation Each regression coefficient β∗k summarises the
proportional effect on survival time T to a unit change in
the corresponding covariate Xk :

β∗k = ∂ ln(T )
∂Xk
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Functional Forms Continuous time specifications

Results

Baseline Hazard
Rate

The longer peacekeeping mission
lasts, the risk of terminating decreases

PH Positive coefficient implies risk of ter-
mination increases

AFT Positive coefficient implies longer du-
ration
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Functional Forms Continuous time specifications

Results

Recall relationship between AFT and PH parameters in the Weibull
model:

β∗k = −σβk = −βk/α, for each k

Civil War coefficient:

β∗k = −1.24 ∗ 0.89 = −1.10
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Functional Forms Continuous time specifications

AFT interpretation

RB absolute differences in characteristics imply proportionate
differences in survival times

log(Ti | Tj) = β∗
′
(Xi − Xj)

Time ratio for covariate k = exp(β∗k)

Interstate Conflict: β∗ = 1.74

exp(1.74) = 6

Interstate conflicts are around 6 times longer than internationalized
civil wars
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Functional Forms Continuous time specifications

PH Interpretation

with characteristics vectors Xi and Xj ,

θ(t,Xi )

θ(t,Xj)
= exp (β′Xi − β′Xj).

Note that hazards have same shape, but different scales (λ)

Hazard ratio between Civil war and internationalized civil war (ICW)
is: exp(0.89) = 2.4

Hazard ratio between Interstate conflict and ICW: exp(−1.4) = 0.24
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Functional Forms Discrete Time Specifications

Discrete time models

1 Complementary log-log (cloglog) model

→ Can interpret as specification of a proportional hazards model:
underlying survival process is continuous, but survival time data are
recorded in bands (‘grouped’).

2 Discrete time logistic model

→ Can interpret as specification of a proportional odds model for an
intrinsically discrete survival process

NB can apply both models to discrete time data.
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Functional Forms Discrete Time Specifications

Cloglog model as discrete time PH model

Underlying process described by continuous hazard θ(t,X ) but data
grouped into intervals.

We estimate the parameters for a PH model of θ, taking account of
the interval censoring.
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Functional Forms Discrete Time Specifications

Cloglog model as discrete time PH model (ctd)

Survivor function at time aj :

S(aj ,X ) = exp

[
−
∫ aj

0
θ0(t)λdu

]
= exp

[
−λ
∫ aj

0
θ0(t)du

]
= exp [−Hjλ]

where Hj ≡ H(aj) =
∫ aj

0 θ0(u,X )du is the integrated baseline hazard at aj ,
and using the PH assumption θ(t,X ) = θ0(t) exp(β′X )
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Functional Forms Discrete Time Specifications

Cloglog model as discrete time PH model (ctd)

Discrete time hazard, h(aj ,X ) ≡ hj(X ),

hj(X ) =
S(aj−1,X )−S(aj ,X )

S(aj−1,X )

= 1− S(aj ,X )
S(aj−1,X )

= 1− exp[λ(Hj−1 − Hj)]
which implies

log(1− hj(X )) = λ(Hj−1 − Hj)

and, hence,

log(− log[1− hj(X )]) = β′X + log(Hj − Hj−1)
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Functional Forms Discrete Time Specifications

Cloglog model as discrete time PH model

Similarly, for the baseline hazard:

log [− log(1− h0j)] = log (Hj − Hj−1)

= log

[∫ aj

aj−1

θ0(u)du

]
= γj , say

where γj = log of integrated hazard over interval (aj−1, aj ]
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Functional Forms Discrete Time Specifications

Cloglog model as discrete time PH model

Substituting this back into the expression for overall hazard rate yields

log(− log[1− hj(X )]) = β′X + γj

I.e. cloglog(hazard for interval j) = linear function of characteristics, plus
duration-interval-specific parameter

h(aj ,X ) = 1− exp[− exp(β′X + γj)]
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Functional Forms Discrete Time Specifications

Logistic hazard model as discrete time proportional odds
model

Suppose that the relative odds of failure in interval j, conditional on
survival to end of interval j − 1, take the proportional odds form:

h(j ,X )
1−h(j ,X ) =

[
h0(j)

1−h0(j)

]
exp(β′X )

for discrete hazard hj(X) for interval j. Hence,

logit[h(j ,X )] = log
[

h(j ,X )
1−h(j ,X )

]
= αj + β′X

I.e. logit(hazard for interval j) = linear function of characteristics, plus

duration-interval-specific parameter.
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Functional Forms Discrete Time Specifications

Cloglog vs. logit

Interval-specific parameters in each model (γj and αj) may, in
principle, differ for each interval ⇒ non-parametric duration
dependence (but can’t then extrapolate out of sample range)

Alternatively, parameterize.
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Functional Forms Discrete Time Specifications

Cloglog vs. logit

Alternatively, parameterize. E.g.

→ r log(j): r + 1 ≡ q is analogous to Weibull model’s shape parameter.
Include log(j) as additional regressor; estimated r is coeff.

→ aj + bj2 + . . . zjn: nth order polynomial of time (usually with n = 2 or 3
at most). E.g. quadratic: define new variables j and j-squared

→ piecewise constant : several intervals have the same constant hazard
(rather than differing in every interval). Define a set of dummy
variables where each variable identifies a group of spell months. Then
either include all the dummy variables in the regression and exclude the
constant term, OR include all but one dummy and include constant
term
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Functional Forms Discrete Time Specifications

Cloglog vs. logit

The 2 models provide similar estimates if the hazard is ‘small’:

logit(h) = log
(

h
1−h

)
= log(h)− log(1− h)

but as h→ 0, log(1− h)→ 0 too. In which case like a PH model:
log[θ(t)] + β′X
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Functional Forms Discrete Time Specifications

Cloglog vs. logit

Interpretation of coefficient βk :

logistic model: change in proportionate (log) odds of failure given a
one unit change in Xk

cloglog model: proportionate change in continuous time hazard (θ)
given a one unit change in Xk , or (intrinsically discrete case),
proportionate change in cloglog(hazard) given same change.
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Functional Forms Deriving information about distributions

Describing the distribution of spell lengths

You have estimates of the parameters of a model but what do they imply
about the spell length distributions?

How long are spells?

→ Median and mean spell lengths

How do spell lengths differ for persons with different characteristics?

What is the pattern of duration dependence?

Focus here on Weibull model examples; less on other models.
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Functional Forms Deriving information about distributions

Weibull model

Recall that θ(t,X ) = αtα−1λ, where λ ≡ exp(β′X ).

Weibull is PH model, so have all the interpretations that derived for PH
models
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Functional Forms Deriving information about distributions

Weibull model

Weibull is PH model, so have all the interpretations that derived for PH
models, e.g.

βk is proportionate change in hazard given unit change in Xk

Elasticity of hazard w.r.t. Xk is βkXk

Elasticity of hazard w.r.t. t is α− 1

Two persons with same X , at different survival times:

θ(t,X )/θ(u,X ) = (t/u)α−1

Two persons at same t, different X :

θ(t,X1)/θ(u,X2) = exp(β′X1 − β′X2)

as for all PH models
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Functional Forms Deriving information about distributions

Weibull survivor function

We can derive the survivor function from the hazard rate function:
S(t) = exp[−H(t)], where

H(t) =

∫ t

0
θ(u)du

H(t) =

∫ t

0
θ(u)du

So, substitute the Weibull hazard into general expression for S(t):
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Functional Forms Deriving information about distributions

Weibull survivor function

S(t) = exp

(
−
∫ t

0
αuα−1λdu

)
= exp

(
−λα

{
uα

α

]t
0

})
= exp

(
−λα

[
tα

α −
0α

α

])
Hence,

S(t,X ) = exp(−λtα)
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Functional Forms Deriving information about distributions

Weibull density and integrated hazard

Density function:

Since, in general, f (t) = θ(t)S(t),

f (t,X ) = αtα−1λ exp(−λtα)

Integrated hazard function

Since, in general, H(t) = − ln[S(t)],

H(t,X ) = λtα
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Functional Forms Deriving information about distributions

Weibull density and integrated hazard

It therefore follows that

logH(t,X ) = log(λ) + α log(t)

= β′X + α log(t).

Plot log(H) against log(t): if Weibull, should see parallel lines
with common slope (α).
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Functional Forms Deriving information about distributions

Weibull: median duration

Survivor function, S(t)

1

0 tm

0.5

Median duration: survival time m, such that S(m) = 0.5.

Weibull: ln[S(t)] = −λtα
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Functional Forms Deriving information about distributions

Weibull: median duration

Median duration: survival time m, such that S(m) = 0.5.

Weibull: ln[S(t)] = −λtα

So, median satisfies ln(0.5) = −λmα

And, hence:

m =
[

1
λ [− log(0.5)]

] 1
α

=
[

1
λ log(2)

] 1
α .

Upper and lower quartiles, etc., derived similarly
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Functional Forms Deriving information about distributions

Weibull: mean duration

Mean (‘expected’) duration:

E (T ) =

∫ ∞
0

tf (t)dt =

∫ ∞
0

S(t)dt

Weibull model:

E (t) =
(

1
λ

) 1
α Γ
(
1 + 1

α

)
where Γ(z) is the Gamma function.

Γ(z) = (z − 1)! if z is an integer.

E.g. Γ(5) = 4 ∗ 3 ∗ 2 ∗ 1 = 24
Γ(4) = 3 ∗ 2 ∗ 1 = 6
Γ(3) = 2 ∗ 1 = 2
Γ(2) = 1
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Functional Forms Deriving information about distributions

Weibull: mean duration

If z non-integer, use special tables or function built into software.

So, if α = 0.5 (negative duration dep.):

E (T ) = 2/λ2.

If α = 1 (Exponential model) ,

E (T ) = 1/α.
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Functional Forms Deriving information about distributions

Weibull: median vs. mean

Ratio of mean to the median:

ratio =
Γ(1+ 1

α)
[log(2)]1/α

Unless hazard increasing at particularly fast rate (α� 1),
mean > median.

If α = 0.5, ratio ≈ 4.2
If α = 1, ratio ≈ 1.4
If α = 2, ratio ≈ 1.1
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Functional Forms Deriving information about distributions

Weibull: median vs. mean

Elasticity of mean w.r.t. one unit change in Xk

= Elasticity of median w.r.t. one unit change in Xk !

= −βkXk
α

If Xk ≡ log(Zk), − βk/α = elasticity of the me(di)an with respect to Zk .
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Functional Forms Deriving information about distributions

Loglogistic model

Loglogistic model is AFT so have all the interpretations that derived
for AFT models, e.g.

→ β∗k is proportionate change in latent survival time given unit change in
Xk

→ Elasticity of latent survival time w.r.t. Xk is β∗kXk
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Functional Forms Deriving information about distributions

Loglogistic model

Survivor Function:

S(t,X ) = 1
1+(ψt)1/γ

Integrated hazard:

H(t) = log
[
1 + (ψt)

1
γ

]
Density function:

f (t) = θ(t)S(t)
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Functional Forms Deriving information about distributions

Loglogistic: median, mean

Median: m = 1
ψ = 1

exp(−β∗′X )

Mean: E (T ) = 1
ψ

γπ
sin(γπ) , γ < 1

If γ ≥ 1, no closed form.

Elasticity of median w.r.t. one unit change in Xk

= Elasticity of mean w.r.t. one unit change in Xk (γ < 1 case)

= β∗kXk/ψ

Ratio of mean to median:

γπ
sin(γπ) , γ < 1
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Functional Forms Deriving information about distributions

Loglogistic model: log-odds of survival interpretation

From the definition of S(t,X ), the conditional odds of survival to time t
are

S(t,X )
1−S(t,X ) = (ψt)−

1
γ

When X = 0, also true, so:

S(t,X |X=0)
1−S(t,X |X=0) = (tψ0)−

1
γ
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Functional Forms Deriving information about distributions

Loglogistic model: log-odds of survival interpretation

Hence,
S(t,X )

1−S(t,X ) =
[

S(t,X |X=0)
1−S(t,X |X=0)

] (
ψ
ψ0

)− 1
γ

log
[

S(t,X )
1−S(t,X )

]
= β∗

′
X − ϕ log(t)

Odds of survival depend on a common ‘baseline’ odds scaled by
person-specific factor. Specification check: graph log odds of survival
against log(t). Parallel lines result.
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Functional Forms Deriving information about distributions

Discrete time models

Survival up to end of j th interval (or completion of j th cycle):

S(j) = Sj =

j∏
k=1

(1− hk)

where discrete time hazard, hk , is a logistic or cloglog function of
characteristics and elapsed survival time.
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Functional Forms Deriving information about distributions

Discrete time models

Median duration:
closed form expressions not usually available. Usually have to derive them
numerically.
E.g. calculate S(t,X ) and find m s.t. S(m,X ) = 0.5.

Mean duration: for maximum time K,

E (T ) =
K∑

k=1

kf (k) =
K∑

k=1

S(k)

Closed forms available if h(j) constant, all j .
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Estimation

Estimation of the survivor and
hazard functions
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Estimation

Estimation

The empirical survivor and hazard rate functions

Continuous time multivariate models

Discrete time multivariate models

→ random sample, with right censoring
→ left-truncation (‘delayed entry’; ‘stock sampling with follow-up’)
→ right-truncation (outflow sample)

Cox’s PH model
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Estimation

Empirical survivor and hazard rate functions

Estimators of

→ S(t) and H(t) from continuous time survival time data: Kaplan-Meier
(product-limit) estimators

→ S(j), H(j), and h(j), from grouped time data: lifetable estimators

Shapes of these functions for population as a whole (or separately for
subgroups)

Assume random samples from population of spells (allow right
censoring, but not truncation)
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Estimation Kaplan-Meier (product-limit) estimators

Kaplan-Meier estimators

Definitions:

t1 < t2 < . . . tj < tk <∞ the failure times observed in the data

dj # persons observed to ‘fail’ (make transition out of state) at
time tj

mj # persons whose spell length is censored in the interval of
time [tj ,tj+1)

nj # persons at risk of failure just immediately prior to date tj

nj = (mj + dj) + (mj+1 + dj+1) + . . .+ (mk + dk)

Failure

time

# failures # censored # at risk of

failure

t1 d1 m1 n1

t2 d2 m2 n2

t3 d3 m3 n3

: : : :

tj dj mj nj
: : : :

tk dk mk nk
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Estimation Kaplan-Meier (product-limit) estimators

Kaplan-Meier estimators

Failure

time

# failures # censored # at risk of

failure

t1 d1 m1 n1

t2 d2 m2 n2

t3 d3 m3 n3

: : : :

tj dj mj nj
: : : :

tk dk mk nk
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Estimation Kaplan-Meier (product-limit) estimators

K-M estimators of S(t) and H(t)

Recall that S(t) = 1− F (t) and H(t) = − ln[S(t)].

Estimate survivor function at each failure time observed in data set using
estimator

Ŝ(tj) =
∏
j |tj<t

(
1−

dj
nj

)

1− ‘exit rate’ at tj
= 1− (# exits)/(# at risk)

Ŝ(tj) is product of one minus the exit rate at each of the observed failure
times.
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Estimation Kaplan-Meier (product-limit) estimators

K-M estimators of S(t) and H(t)

Integrated hazard function

Ĥ(tj) = − log Ŝ(tj)

Or Nelson-Aalen estimator:

Ĥ(tj) =
∑
j |tj<t

(
dj
nj

)
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Estimation Kaplan-Meier (product-limit) estimators

Survivor & integrated hazard functions

Estimates possible only at the observed failure times!

Graphs of estimated S(t), H(t), are step functions

Cannot reliably estimate θ from change in estimated H(t) divided by
difference in times – slope of H(t) not well-defined with
step-function. Cf. estimators of ‘smoothed’ hazard rate.
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Estimation Kaplan-Meier (product-limit) estimators

Survivor & integrated hazard functions
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Estimation Kaplan-Meier (product-limit) estimators

Survivor & integrated hazard functions
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Estimation Lifetable Estimators

Lifetable estimators of S(j), H(j), and h(j)

Uses broadly same idea, but is applied to discrete (or banded) survival
time data:

Intervals of time Ik = [tk , tk+1), k = 1, 2, . . . ,K , where

→ dk : # failures in interval Ik
→ mk : # censored spell endings in interval Ik
→ Nk : # persons at risk of failure at start of Ik

Two approaches:
(1) Interval hazard and survivor functions (or if time is intrinsically
discrete)
(2) Continuous time hazard and survivor functions estimated, using
additional assumptions, from the grouped data (’actuarial adjustment’),
and taken to refer to the time corresponding to the midpoint of each
interval
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Estimation Lifetable Estimators

Lifetable estimators of S(j), H(j), and h(j)

(1) Interval hazard and survivor functions
Exit rate for the kth interval:

dk
nk

Survivor function for the kth interval:

Ŝ(k) =
k∏

j=1

(
1− dk

nk

)
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Estimation Lifetable Estimators

Lifetable estimators of S(j), H(j), and h(j)

(2) ’Actuarial adjustment’ for (continuous) hazard and survivor
functions

Aim: produce estimates referring to the dates corresponding to each
mid-point

Method: some faiures occur during interval – adjust the number at
risk in each interval to take account of this ⇒ ‘averaged’ estimate
centred on interval mid-point.

Assumption: If transitions evenly spread over interval (uniform
density), 50% fail by half-way through Ik .

nk Adjusted # persons at risk of failure used for midpoint of Ik :

nk = Nk −
dk
2

Recall that S(t) = 1− F (t), f (t) = ∂F/∂t and H(t) = − ln[S(t)].
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Estimation Lifetable Estimators

Lifetable estimators of S(j), H(j), and h(j)

(2) ’Actuarial adjustment’ (ctd.)
Estimator of S(k):

Ŝ(k) =
k∏

j=1

(
1− dk

nk

)
Estimator of f (k):

f̂ (k) = F̂ (k+1)−F̂ (k)
tk+1−tk = Ŝ(k)−Ŝ(k+1)

tk+1−tk
Estimator of hazard:

θ̂(k) =
[f̂ (k)]
S̃(k)

where S̃(k) = Ŝ(k)+Ŝ(k+1)
2 is taken as applying to the time corresponding

to midpoint of the interval.

If data are intrinsically discrete, or interval hazard required, there’s no
need to ‘adjust’ (same as K-M).
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Estimation Estimation using Stata

Estimation using Stata

See web course Lessons

Kaplan-Meier (and related) estimators:

→ stset the survival data, and then use sts commands (sts, sts graph, sts
generate)

Lifetable estimators

→ ltable command (by default produces actuarilly adjusted estimates)
→ Use noadjust option otherwise (compare with sts applied to the same

data)
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CT multivariate models

Multivariate regression models

Estimates for both continuous and discrete time models derived using
the method of ‘maximum likelihood’ (ML) [except Cox’s model]. Cf. problems

with OLS discussed at start; ML plus basic concept allows us to derive good estimates.

Likelihoods need to be appropriate for the data generation process
(differing with sampling scheme to account for right censoring,
truncation, etc.)
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CT multivariate models

Maximum likelihood principle

Cf. OLS principle choose as parameter estimates, those which minimize
the residual sum of squares.

ML principle choose as parameter estimates, those which maximize the
likelihood of observing the distribution of data in the sample:

Likelihood contribution for each person i = 1, 2, . . . n,
(cf. “probability of observing i ’s data”): Li (δ)

→ where δ is a vector of parameters (e.g. β, and shape
parameters).
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CT multivariate models

Maximum likelihood principle

Sample likelihood:

L(δ) =
n∏

i=1

Li (δ)

ML estimators δ̂ are the values for which L(δ̂) or, equivalently logL(δ̂) are
maximised.

Get standard error estimates too, from 2nd order conditions. ML estimates are
consistent, and asymptotically efficient (given correct distributional assumption).
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CT multivariate models

Likelihoods for continuous time data

(1) Random sample from inflow, each
spell monitored until completion
(no right-censoring)
Individual likelihood contributions
given by the relevant density function;
sample likelihood is their product:

L =
n∏

i=1

f (Ti )

where Ti is length of completed spell for person i. Choice of model fixes
f(t) form.
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CT multivariate models

Likelihoods for continuous time data

(2) Random sample from inflow with
right censoring at common time t∗

Density function Survivor function

Completed spells indexed by j = 1, . . . , J(Tj ≤ t∗) censored spells indexed
by k = 1, . . . ,K (Tk � t∗)
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CT multivariate models

Likelihoods for continuous time data

(3) Random sample from population, right censoring
but varies across persons (most common case in lit.)

L =
J∏

j=1

f (Tj)
K∏

k=1

S(Tk)

L is often written differently in this case (to facilitate the estimation).
Taking logs,
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CT multivariate models

Likelihoods for continuous time data

lnL =
J∑

j=1

ln f (Tj) +
K∑

k=1

lnS(Tk)

=
J∑

j=1

ln

[(
f (Tj)

S(Tj)

)
S(Tj)

]
+

K∑
k=1

lnS(Tk)

=
J∑

j=1

ln [θ(Tj)S(Tj)] +
K∑

k=1

lnS(Tk)

=
J∑

j=1

ln θ(Tj) +
N∑
i=1

lnS(Ti )
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CT multivariate models

Likelihoods for continuous time data

=
J∑

j=1

ln θ(Tj) +
N∑
i=1

lnS(Ti )

Survival Analysis - 4

Censoring indicator: c
i
= 1 if spell completed

                                      = 0 if spell censored.

–H(T
i
)
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CT multivariate models

Likelihoods for continuous time data

(4) Left truncated spell data (‘delayed entry’),
with right censoring

Most common social science example is where one has a sample from
the stock of persons in the state of interest at one date, plus
follow-up of sample to some later date.
Spell start dates are assumed known (they’re before the sampling
date.)
‘Delayed entry’ because observation of subjects starts some time after
first at risk of event.
Non-random sample. We have to condition on the fact that a person
survived sufficiently long in the state in order to be at risk of being
sampled from the stock. Else have a ’selection bias’ related to spell
length.
‘Left-truncation’: short spells under-represented; long spells
over-represented
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CT multivariate models

Left-truncated data

We need to derive the contribution to the likelihood for each person,
conditioning on survival up to the date of truncation
Recall rule of conditional probability: Pr(A|B) = Pr(A ∩ B)/Pr(B)

A: “extra time observed in state after truncation date”
B: “survival to truncation date”

Letting
Ti spell length for i at truncation date
Zi length of time between truncation date and interview (= extra time

observed if a right-censored case)
∆t extra time observed if a completed spell case

Sample likelihood is

L =
J∏

j=1

f (Tj + ∆tj)

S(Tj)

K∏
k=1

S(Tk + Zk)

S(Tk)

completed spells censored spells
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CT multivariate models

Left-truncated data

(5) Sample from stock with no follow-up

E.g. data for people in stock in cross-section survey (for whom ask
spell start date). Used to be common (lack of longitudinal surveys).

Have no information on which to condition survival in state. So, to
derive the likelihood, have to write down probability of observing a
given spell taking account of the different chances of entering state at
different dates.

Very complicated (see e.g. Nickell 1979, and Lecture Notes).
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CT multivariate models

Likelihoods for continuous time data

(6) Right-truncated spell data

Most common social science example is where one has a sample of
the outflow of persons from the state of interest

Spell start dates are known, and all spells are complete (outflow
sample!)

Non-random sample. We have to condition on the fact, of all those
beginning a spell at some date in past, outflow likely to have an
over-representation of relatively short spells (long-stayers are still in
the state). A ‘selection bias’ related to spell length.
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CT multivariate models

Likelihoods for continuous time data

‘Right-truncation’: long spells under-represented; short spells
over-represented.

Condition on failure at outflow date:

L =
n∏

i=1

f (Ti )

F (Ti )
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CT multivariate models

Estimation using Stata

Models for all the sampling schemes discussed above (with the
exception of the right-truncation, and stock-sample-no-follow-up) can
be estimated using streg command:

stset the survival time data

→ includes setting entry date for left-truncated data

use streg, with relevant options to choose e.g.

→ the model (Weibull through Gamma, etc.)
→ metric for reporting parameters (coeffs. vs hazard ratios, etc)
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CT multivariate models “Episode splitting”

“Episode splitting” to incorporate time-varying covariates

Return to case (2) = Random sample from inflow, with right censoring.
We assumed

all explanatory variables constant

data set organised so that have one row for each individual at risk of
failure.

Incorporating time-varying covariates requires episode splitting :

Split the survival time for each person into sub-periods within which
each TVC is constant.

Create multiple records for each person, with one record for each
subperiod

What is the logic behind this?
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CT multivariate models “Episode splitting”

Episode splitting, ctd.

Consider a person i with 2 different values for covariate X:

X = X1 if t < u
X = X2 if t ≥ u

Log-likelihood contribution for person in sample of type (2) is

lnLi = ci ln[θ(Ti )] + ln[S(Ti )]

with censoring indicator ci = 1 if complete spell, 0 otherwise.
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CT multivariate models “Episode splitting”

Episode splitting, ctd.

lnLi = ci ln[θ(Ti )] + ln[S(Ti )]

But,log survival to Ti :

ln[S(Ti )] = ln
[
S(u)S(Ti )

S(u)

]
= ln[S(u)] + ln

[
S(Ti )
S(u)

]
Log probability of survival from
entry until time u: create new
record with ci = 0, t = u

Log probability of survival to Ti

conditional on entry at time u.
One record with ‘delayed en-
try’ at u, ci set at 0 or 1 (de-
pending on whether censored)
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CT multivariate models “Episode splitting”

Episode splitting, ctd.

Episode splitting reorganises the data so that records yield the correct
likelihood contributions

Record # Censoring 
indicator, c

i

Survival 
time

Entry 
time

TVC 
value

Single record for i

1 0 or 1 T
i

0 –

Multiple records for i, after episode splitting

1 0 u 0 X
1

2 0 or 1 T
i

u X
2
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CT multivariate models “Episode splitting”

Episode splitting, ctd.

Record # Censoring 
indicator, c

i

Survival 
time

Entry 
time

TVC 
value

Single record for i

1 0 or 1 T
i

0 –

Multiple records for i, after episode splitting

1 0 u 0 X
1

2 0 or 1 T
i

u X
2

Likelihood contributions:
Record 1: lnLi = S(u,X1)
Record 2: lnLi = ci ln[θ(T1,X2)] + ln[S(T1,X2)/S(u,X1)]

Stata and TVCs

episode split using stsplit (thereby updating stset)

create the relevant TVCs

estimate (as above)
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DT multivariate models Inflow sample with right censoring

Likelihoods for discrete time data

(1) Random sample, with right censoring.

Likelihood contribution for a censored spell is:

Li = Pr(Ti > j) = Si (j)

=

j∏
k=1

(1− hik)

Likelihood contribution for a completed spell is:

Li = Pr(Ti = j) = fi (j)

= hijSi (j − 1)

=
hij

1−hij

j∏
k=1

(1− hik)
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DT multivariate models Inflow sample with right censoring

Likelihoods for discrete time data

censored spell

Li =

j∏
k=1

(1− hik)

completed spell

Li =
hij

1−hij

j∏
k=1

(1− hik)
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DT multivariate models Inflow sample with right censoring

Likelihoods for discrete time data

Hence likelihood contribution for whole sample is . . . :

L =
n∏

i=1

[Pr(Ti = j)]ci [Pr(T > j)]1−ci

=
n∏

i=1

[(
hij

1− hij

) j∏
k=1

(1− hik)

]ci [ j∏
k=1

(1− hik)

]1−ci

=
n∏

i=1

[(
hij

1− hij

)ci j∏
k=1

(1− hik)

]

⇒ logL =
n∑

i=1

ci log

(
hij

1− hij

)
+

n∑
i=1

j∑
k=1

log(1− hik)
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DT multivariate models Inflow sample with right censoring

Likelihoods for discrete time data

Now define a new binary indicator variable yik = 1 if person i experiences
event in interval k , and yik = 0 otherwise.

I.e.
ci = 1 =⇒ yik = 1 for k = Ti , yik = 0 otherwise
ci = 0 =⇒ yik = 0 for all k

Hence, ...
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DT multivariate models Inflow sample with right censoring

Likelihoods for discrete time data

Sample likelihood

L =
n∑

i=1

j∑
k=1

yik log

(
hik

1− hik

)
+

n∑
i=1

j∑
k=1

log(1− hik)

=
n∑

i=1

j∑
k=1

[yik log hik + (1− yik) log(1− hik)]

Expression has same form as standard likelihood function for a binary
regression model in which yit is the dependent variable, and data structure
reorganized from having one record per spell to one one record for each
interval that each person is at risk of transition from state (person-period
data structure)
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DT multivariate models Inflow sample with right censoring

Likelihoods for discrete time data

Example of person and person-period data:

Person data structure Person-period data structure

Person i,

id #

ci Ti Person i,

id #

ci Ti yit Person

-month

k, id #

1 0 2 1 0 2 0 1

1 0 2 0 2

2 1 3 2 1 3 0 1

2 1 3 0 2

2 1 3 1 3

: : : : : :
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DT multivariate models Inflow sample with right censoring

Likelihoods for discrete time data

“Easy estimation” method:

1 Reorganize data into person-period format (= episode splitting at
each interval).
In Stata, use expand or stsplit

2 Create any time-varying covariates; at minimum this includes a
variable to describe duration dependence

3 Choose functional form for hazard (logistic or cloglog)

4 Estimate using relevant binary depvar program
(In Stata, logit, cloglog)
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DT multivariate models Left-truncated spell data (‘delayed entry’)

Likelihoods for discrete time data

(2) Left-truncated spell data (‘delayed entry’)

(analogous to continuous time case) need to condition on survival up
to truncation point. Call this ui for person i :

I.e. divide likelihood contribution derived in previous case by
Pr(survival to time ui )

Li =

(
hij

1−hij

)ci
j∏

k=1

(1− hik)

S(ui )

But

S(ui ) =

ui∏
k=1

(1− hik)
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DT multivariate models Left-truncated spell data (‘delayed entry’)

Left truncation case, ctd.

Hence, get ‘convenient cancelling’ result:

Li =
(

hij
1−hij

)ci


j∏
k=1

(1− hik)

ui∏
k=1

(1− hik)


=

(
hij

1−hij

)ci j∏
k=ui+1

(1− hik)
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DT multivariate models Left-truncated spell data (‘delayed entry’)

Left truncation case, ctd.

Taking logs, we have:

logLi =

j∑
k=ui+1

[yik log hik + (1− yik) log(1− hik)]

which is very similar to the expression in the no-truncation case, except
that the summation now runs over the intervals from month of truncation
to month when last observed. So implement . . .
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DT multivariate models Left-truncated spell data (‘delayed entry’)

Left truncation case, ctd.

“Easy estimation” method with left-truncated data:

1 Reorganize data into person-period format (= episode splitting at
each interval).
In Stata, use expand or stsplit

2 Drop the records for all records corresponding to intervals before
truncation period u

3 Create any time-varying covariates; at minimum, this includes a
variable to describe duration dependence

4 Choose functional form for hazard (logistic or cloglog)

5 Estimate using relevant binary depvar program. (In Stata, logit,
cloglog.)

The only difference from before is Step 2 (throwing away some data).
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DT multivariate models Right-truncated spell data (outflow sample)

Likelihoods for discrete time data, ctd.

(3) Right-truncated spell data (outflow sample)

Parallels continuous time data case again.

No censored spells (all completed), by construction, but

need to account for selection bias arising from sampling: condition
each individual’s likelihood contribution on failure at observed failure
time.

Li =

(
hij

1−hij

) j∏
k=1

(1− hik)

1−


j∏

k=1

(1− hik)


Density
failure

Unfortunately no ‘convenient cancelling’ result in this case: special
programs required.
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Cox’s PH model

Cox’s PH model

General PH specification

θ(t,Xi ) = θ0(t) exp(β′Xi )
= θ0(t)λi

Cox model: Unspecified (non-parametric) baseline hazard function
θ0(t)

Estimated using method of ‘partial likelihood’ (PL), not ML

Intuitive illustration here of how model works

Assume: random sample with right-censoring (but no truncation), and

no time-varying covariates

only one event (max.) at each survival time

SHP Methodological Workshop (PFerreira) Survival Analysis using the SHP July 2016, UoLausanne 176 / 244



Cox’s PH model

Cox’s PH model

PL works in terms of ordering of events, and their occurrence (cf.
focus in ML on persons)

Example data

Person

i

Time

ti

Event #

k

1   2 1

2   4 2

3   5 3

4     5*

5   6 4

6     9*

7 11 5

8   12*

*censored spell

Sample Partial Likelihood

PL = ∏

=

K

k
k

L

1

� What is each Lk?

# events (total)

indexes events
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Cox’s PH model

Cox’s PH model

Example data

Person

i

Time

ti

Event #

k

1   2 1

2   4 2

3   5 3

4     5*

5   6 4

6     9*

7 11 5

8   12*

*censored spell

Sample Partial Likelihood

PL = ∏

=

K

k
k

L

1

� What is each Lk?

# events (total)

indexes events

Lk = Pr(person i has event at t = ti ,
conditional on being in the risk set
at t = ti ), i.e.

= Pr(this particular person has event at
this time, given that there is one obs
among many who has event)SHP Methodological Workshop (PFerreira) Survival Analysis using the SHP July 2016, UoLausanne 178 / 244



Cox’s PH model

Cox’s PH model

Evaluate using rules of conditional probability and fact that
f (t) = θ(t)S(t).

Pr(event in tiny interval) (t, t + ∆t] = f (t)dt = θ(t)S(t)dt

Example data

Person

i

Time

ti

Event #

k

1   2 1

2   4 2

3   5 3

4     5*

5   6 4

6     9*

7 11 5

8   12*

*censored spell

Sample Partial Likelihood

PL = ∏

=

K

k
k

L

1

� What is each Lk?

# events (total)

indexes events

Consider event k = 5 with risk set i ∈ {7, 8}.
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Cox’s PH model

Cox’s PH model

Consider event k = 5 with risk set i ∈ {7, 8}.

Let A = Pr(event experienced by i = 7 and not i = 8)

= [θ7(11)S7(11)dt] [S8(11)dt]

Let B = Pr(event experienced by i = 8 and not i = 7)

= [θ8(11)S8(11)dt] [S7(11)dt]

Expression for probability A conditional on the probability of either A or B
(sum of probabilities A and B)
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Cox’s PH model

Cox’s PH model

PL(event # 5) = θ7(11)
θ7(11)+θ8(11)

NB Survivor function terms cancel!

Can apply same idea to derive PL contributions for all the other
events. E.g.

PL(event # 1) = θ1(2)
θ1(2)+θ2(2)+...+θ8(2)

(Everyone is in the risk set for the first event.)

Now let us apply the PH assumption about shape of the hazard, i.e.
θ(t,X ) = θ0(t) exp(β′X )
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Cox’s PH model

Cox’s PH model

Substituting in,

Pl(event # 5) = θ0(11)λ7

θ0(11)λ7+θ0(11)λ8

= λ7
λ7+λ8

The baseline hazard contributions cancel! (So too does the intercept term
in λ, i.e. exp(β0))

Similarly,

PL(event # 1) = λ1
λ1+λ2+...+λ8

and so on for all the other events.

Given the PL for whole sample, maximise it to derive estimates of the
slope coefficients in β. (Estimator has nice properties.). . .
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Cox’s PH model

Cox’s PH model

NB baseline hazard β0(t) not identified. Can take any form.
(flexibility = advantage . . . or disadvantage if baseline shape is of
intrinsic interest!)

Estimate in Stata using stcox (after stset)

With tied survival times, various approximations to PL available

Can incorporate TVCs: only need to episode split (stsplit) at failure
times, since estimates based only on risk pool at those times (and not
anything that happens in between)

NB expression for each PL contribution depends only on order of
occurrence (not precise survival times) Exercise: double all survival times, and

repeat derivations above.
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Additional Topics

Additional Topics

(a) Unobserved heterogeneity (‘frailty’)

(b) Independent competing risks models

(c) not at present

. . . (e.g. model specification tests, modelling repeated spells, more
complicated data set-up examples, case studies; etc.)
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Additional Topics Unobserved heterogeneity (‘frailty’)

Unobserved heterogeneity (‘frailty’)

In regression models so far, all differences between individuals
assumed to be captured using the measured X

Generalize to allow for unobserved individual effects (‘frailty’),
because e.g.:

→ omitted variables (unobserved or unobservable)
→ measurement errors in observed survival times or regressors
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Additional Topics Unobserved heterogeneity (‘frailty’)

Unobserved heterogeneity (‘frailty’)

What if important, but ignored?

The literature suggests:

1 ‘no frailty’ model over-estimates the degree of negative duration
dependence (under-estimates the degree of positive duration
dependence)

2 Proportionate response of the hazard to a unit change in Xk is no
longer constant (= βk in earlier PH models): declines with time

3 one gets an under-estimate of the true proportionate response of the
hazard to a change in a regressor k from the no-frailty-model βk
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Additional Topics Unobserved heterogeneity (‘frailty’)

Unobserved heterogeneity (‘frailty’)

Now examine frailty specifications, and these findings, in more detail . . .

For convenience we suppress the subscript indexing individuals, and
assume there are no time-varying covariates.

We consider the model θ(t,X |υ) = υθ(t,X )

υ is unobservable individual effect; it scales the no-frailty hazard rate,
where

υ > 0 E(υ) = 1, finite variance σ2 > 0, and is distributed independently of t
and X
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Additional Topics Unobserved heterogeneity (‘frailty’)

Unobserved heterogeneity (‘frailty’)

Relationship between frailty and non-frailty survivor function

S(t,X |υ) = [S(t,X )]υ

Interpretation: Individuals with above-average υ exit relatively fast
(higher hazard, shorter survival time). Vice-versa for those with
below-average υ

if θ() has PH form, then

log[θ(t,X |υ)] = [log θ0(t)] + β′X + u

where u ≡ log(υ). I.e. frailty model for log-hazard adds an additive
’error’ term (random intercept model)
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Additional Topics Unobserved heterogeneity (‘frailty’)

Estimation with frailty models

How does one estimate frailty models, given that the individual effect
is unobserved? (We cannot estimate each υ since, by construction,
they are unobserved.)

Suppose the distribution of υ has a shape whose functional form is
summarised in terms of only a few key parameters, then we can
estimate those parameters with the data available.
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Additional Topics Unobserved heterogeneity (‘frailty’)

Estimation with frailty models

The steps are:

1 Specify a distribution for the random variable υ, where this ‘mixing’
distribution has a particular parametric functional form, e.g.
summarising var(υ)

2 Derive the ‘frailty’ survivor function corresponding to this ‘mixture’
distribution (i.e. ‘integrate out’ the random individual effect).

3 Using this, and the frailty hazard, derive the likelihood function: it
refers to the mixing distributional parameter(s), and the original
parameters
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Additional Topics Unobserved heterogeneity (‘frailty’)

Frailty survival function

One works with some function

Sυ(t,X ) = Sυ(t,X |β, σ2)

rather than Sυ(t,X |β, υ)

Given some probability density g(υ) for υ, then

Sυ(t,X ) =

∫ ∞
0

[S(t,X )]υg(υ)dυ
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Additional Topics Unobserved heterogeneity (‘frailty’)

Frailty survival function

Most commonly-used g(υ) is Gamma distribution, implying frailty
survivor function:

S(t,X |β, σ2) = [1− σ2 lnS(t,X )]−
1
σ2

= [1 + σ2H(t,X )]−
1
σ2

And frailty hazard function

θ(t,X |υ) = θ(t,X )[1− σ2 lnS(t,X )]−1

= θ(t,X )[1 + σ2H(t,X )]−1
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Additional Topics Unobserved heterogeneity (‘frailty’)

Frailty in a discrete time model

Discrete time PH (cloglog) hazard model (Meyer 1990):

cloglog[h(j ,X |υ)] = D(j) + β′X + u

where u ≡ log(υ), as before.

Assuming Gamma mixture for frailty, then there is a closed-form
frailty survivor function (as earlier), and one uses these to construct
the likelihood contributions of persons with a censored spell (frailty
survivor function), and with a completed spell (discrete time density
= difference between frailty survival probabilities over the interval).

Alternatively, suppose u ∼ Normal distribution. Integrating out is
then done numerically

Non-parametric approach: see over
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Additional Topics Unobserved heterogeneity (‘frailty’)

A non-parametric approach

Heckman & Singer (1984): fit an arbitrary discrete distribution
characterized by a set of ‘mass points’ along the support, and
corresponding probabilities of being located at each of these points.
Cf. sociologists’ latent class model.

Example using discrete time PH model hazard. Suppose individuals
belong to one of two possible unobserved ‘types’ (fast and slow
leavers). Allow intercept in hazard to differ between classes:
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Additional Topics Unobserved heterogeneity (‘frailty’)

A non-parametric approach

Allow intercept in hazard to differ between classes:

h1(j ,X ) = 1− exp[−exp(µ1 + β1X1 + β2X2 + . . .+ βKXK + γj)]

h2(j ,X ) = 1− exp[−exp(µ2 + β1X1 + β2X2 + . . .+ βKXK + γj)]

Likelihood contribution for individual:

L = πL(µ1) + (1− π)L(µ2)

with L1 constructed from h1, L2 from h2, and π is Pr(person is Type 1).

Can generalize to more types.
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Additional Topics Unobserved heterogeneity (‘frailty’)

What if frailty is important, but ignored?

Suppose ’true’ model, with no omitted regressors, takes PH form, and
continuous mixing distribution. Then...

Proportionate response of hazard to an observed variable Xk is βk :

∂ log[θ(t,X |υ)]
∂Xk

= βk

Does not depend on t or X .

Also proportionate change in hazard with time depends only on the
baseline hazard

∂ log[θ(t,X )υ]
∂t = ∂ log θ0(t,X )

∂t
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Additional Topics Unobserved heterogeneity (‘frailty’)

What if frailty is important, but ignored?

Suppose observed model, i.e. with omitted regressors, takes PH form

θ(t,X |υ) = υθ0(t)λ1

where λ1 = eβ
′
1X1 , X1 is a subset of X .

Assuming υ ∼ Gamma(1, σ2), then

S1(t|σ2) = [1− σ2S(t)]−
1
σ2 = [1 + σ2H(t)]−

1
σ2

θ1(t|σ2) = [S1(t|σ2)]σ
2
θ0(t)λ1
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Additional Topics Unobserved heterogeneity (‘frailty’)

Implications of ignoring frailty:
duration dependence effect

Ratio of hazards from the observed and true models:

θ1
θ = θ0(t)λ1[S1(t|σ2)]σ

2

θ0(t)υ

∞[S1(t|σ2)]σ
2

which is monotonically decreasing with t.

I.e. the hazard rate from a model with omitted regressors increases
less fast, or falls faster, that does the ‘true’ hazard (from the model
with no omitted regressors)
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Additional Topics Unobserved heterogeneity (‘frailty’)

Implications of ignoring frailty:
duration dependence effect

Intuition: a selection or ‘weeding out’ effect.

Controlling for observable differences, people with unobserved
characteristics associated with higher exit rates leave the state more
quickly than others.

Hence ‘survivors’ at longer t increasingly comprise those with low v
which, in turn, implies a lower hazard, and the estimate of hazard is
an underestimate of ‘true’ one.

Bergström & Edin (1992) illustration using AFT representation of
Weibull model:
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Additional Topics Unobserved heterogeneity (‘frailty’)

Implications of ignoring frailty:
duration dependence effect

Bergström & Edin (1992) illustration using AFT representation of
Weibull model:

log(T ) = β*′X + σu

with variance of ‘residuals’ = σ2var(u).

If one added heterogeneity to the systematic part of model, would expect
smaller error variance, i.e. smaller σ.

But σ ≡ 1/α, where α is shape parameter.
So σ ↓ like α ↑, and ‘true’ model has more positive duration dependence
than model without this heterogeneity
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Additional Topics Unobserved heterogeneity (‘frailty’)

Implications of ignoring frailty:
proportionate response of hazard

Consider the proportionate response of the hazard to a variation in Xk

where Xk is an included regressor (part of X1).

Proportionate response in the true model :
∂ log θ
∂Xk

= βk

Proportionate response in the observed model
(see Lecture Notes for derivation):

∂ log θ1
∂Xk

= βk

[
S1(t|σ2)σ

2
]

NB 0 ≤ S1() ≤ 1, and tends to 0 as t →∞. So, . . .
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Additional Topics Unobserved heterogeneity (‘frailty’)

Implications of ignoring frailty:
proportionate response of hazard

1 Omitted-regressor model provides under-estimate (in modulus) of the
‘true’ proportionate response;

2 With omitted regressors, proportionate effect tends to zero as t →∞

‘Weeding out’ effect again (see Notes; Lancaster 1990)
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Additional Topics Unobserved heterogeneity (‘frailty’)

Frailty in practice

The results suggest that taking accounting of unobserved
heterogeneity is a potentially important

The ‘early’ empirical social science literature found that conclusions
about whether or not frailty was ‘important’ (effects on estimate of
duration dependence and estimates of β) appeared to be sensitive to
choice of shape of the mixing distribution.

Some argued that the choice of distributional shape was essentially
‘arbitrary’, and this stimulated the development of non-parametric
methods (Heckman-Singer, etc.).
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Additional Topics Unobserved heterogeneity (‘frailty’)

Frailty in practice

Subsequent empirical work suggests, however, that the effects of
unobserved heterogeneity are mitigated, and thence estimates more
robust, if the analyst uses a flexible baseline hazard specification.

→ Earlier literature had typically used specifications, often the Weibull
one, that were not flexible enough.

All in all, the topic underscores the importance of getting good data,
including a wide range of explanatory variables that summarize well
the differences between individuals.
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Additional Topics ICR models

Independent competing risks (ICR)
models
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Additional Topics ICR models

Independent competing risks (ICR) models

Until now, we have modelled a single risk (exit from current state to
any other).

Now we consider possibility of exit to one of several destination states
(competing risks)

Suppose, for illustration, just two exit states, but the arguments
generalize to any number

Continuous and discrete time models considered

We will see that the assumption of independence in competing risks
aids estimation of models
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Additional Topics ICR models

ICR model
(Continuous time)

Two destination states: A, B (C censored)
Define

θA = (latent) hazard rate of exit to state A, with survival times
characterized by density function fA(t), and latent failure time TA;

θB = (latent) hazard rate of exit to state B, with survival times
characterized by density function fB(t), and latent failure time TB ;
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Additional Topics ICR models

ICR model
(Continuous time)

Observed failure time T = min{TA,TB ,TC}

Assume θA, θB are independent

⇒ θ(t) = θA(t) + θB(t)

If probabilities A,B are independent, then Pr(A or B) = Pr(A) + Pr(B).
Ditto θ(t)dt = θA(t)dt + θB(t)dt
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Additional Topics ICR models

ICR model
(Continuous time)

Independence ⇒ survivor function for exit to any destination state can be
factored into a product of destination-specific survivor functions:

S(t) = exp

[
−
∫ t

0
θ(u)du

]
= exp

[
−
∫ t

0
[θA(u) + θB(u)]du

]
= exp

[
−
∫ t

0
θA(u)du

]
exp

[
−
∫ t

0
θB(u)du

]
= SA(t)SB(t)
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Additional Topics ICR models

ICR model
(Continuous time)

An individual’s contribution to the sample likelihood for ICR model with
two destination states is one of 3 types:

exit to A: LA = fA(T )SB(T )

exit to B: LB = fB(T )SA(T )

censored spell: LC = SA(T )SB(T )

LA summarises chances of transition to A combined with no transition to
B; similarly for LB .
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Additional Topics ICR models

ICR model
(Continuous time)

Now define new censoring indicators:

δA = 1 if i exists to A, 0 otherwise

(exit to B or censored)

δB = 1 if i exits to B, 0 otherwise

(exit to A or censored)
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Additional Topics ICR models

ICR model
(Continuous time)

The overall likelihood contribution from individual i is:

L = (LA)δ
A

(LB)δ
B

(LC )1−δA−δB

= [fA(T )SB(T )]δ
A

[fB(T )SA(T )]δ
B

[SA(T )SB(T )]1−δ
A−δB

=
[
fA(T )
SA(T )

]δA
SA(T )

[
fB(T )
SB(T )

]δB
SB(T )

=
{

[θA(T )]δ
A
SA(T )

}{
[θB(T )]δ

B
SB(T )

}
⇒ lnL = {δA ln θA(T ) + ln SA(T )}+ {δB ln θB(T ) + ln SB(T )}
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Additional Topics ICR models

ICR model
(Continuous time)

⇒ lnL = {δA ln θA(T ) + ln SA(T )}+ {δB ln θB(T ) + ln SB(T )}

Thus, the (log)likelihood for continuous time ICR with 2 destination
states factors into two parts, each of which depends only on
parameters specific to that destination.
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Additional Topics ICR models

ICR model
(Continuous time)

→ Easy estimation method for ICR:
1 define new censoring variables (δA, δB), and
2 estimate separate models for each destination state.
3 Overall model likelihood = sum of likelihoods for each of the

destination-specific models

Problem: if want to test restrictions across destination-specific
hazards, need to return to estimating jointly?

But see Narendranathan & Stewart tests
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Additional Topics ICR models

ICR model
(Intrinsically discrete time)

In continuous time, exits to only one destination state are feasible at
any instant. Hence ICR assumption ⇒ θ(t) = θA(t) + θB(t);
separability result

Intrinsically discrete time process : exits to each destination only
feasible at each cycle, so h(j) = hA(j) + hB(j)

but separability result no longer holds!
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Additional Topics ICR models

ICR model
(Intrinsically discrete time)

Likelihood contributions . . .

LA = hA(j)S(j − 1)

=
[

hA(j)
1−h(j)

]
S(j)

=
[

hA(j)
1−hA(j)−hB(j)

]
S(j)

Similarly for LB , and

LC = S(j) =

j∏
k=1

[1− hA(k)− hB(k)]
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Additional Topics ICR models

ICR model
(Intrinsically discrete time)

The overall likelihood contribution of an individual with an spell length of j
cycles is:

L = (LA)δ
A

(LB)δ
B

(LC )1−δA−δB

=
[

hA(j)
1−hA(j)−hB(j)

]δA [ hB(j)
1−hA(j)−hB(j)

]δB j∏
k=1

[1− hA(k)− hB(k)]
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Additional Topics ICR models

ICR model
(Intrinsically discrete time)

Another way of writing the likelihood, which we refer back to later on, is

L = S(j)
[

h(j)
1−h(j)

]δA+δB [hA(j)
h(j)

]δA [hB(j)
h(j)

]δB
No neat separability result ⇒ have to estimate jointly

But there is one ‘easy’ estimation method if you assume the
destination-specific hazard rates have a specific form: . . .
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Additional Topics ICR models

ICR model
(Intrinsically discrete time)

hA(k) =
exp(β′AX )

1+exp(β′AX )+exp(β′BX )

hB(k) =
exp(β′BX )

1+exp(β′AX )+exp(β′BX )

and hence

1− hA(k)− hB(k) = 1
1+exp(β′AX )+exp(β′BX )
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Additional Topics ICR models

ICR model
(Intrinsically discrete time)

Substitution of these into the expression for L (above) ⇒likelihood
contribution for individual has same shape as likelihood for a
multinomial logit model applied to reorganised data (Allison 1982)

Estimation in 4 steps:
1 Expand data to person-period form
2 Create new categorical depvar to identify the destinations
3 Create any other vars (eg duration dependence and other TVCs)
4 Estimate using an MNL program (can test joint hypotheses directly)
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Additional Topics ICR models

ICR model
(Interval-censored data)

1 Could estimate using MNL model just discussed, or

2 Estimate a model in which we relate the discrete hazard to the
underlying continuous time hazard (cf earlier). If do this, then:

Likelihood not separable
Shape of the continuous time hazard within each interval cannot be
identified from grouped data
. . . so to construct likelihood need assumptions about this shape.

NB more than one latent event is possible in each interval (though
only one can be observed) ⇒when considering Pr(exit to a given
destination during given interval) related to probability of exit to that
destination and that exit occurred before exit(s) to other possible
destinations.
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Additional Topics ICR models

ICR model
(Interval-censored data)

Relationship between discrete overall and destination-specific hazards, and
underlying continuous time hazards for jth interval (aj − 1, aj ]?

h(j) = 1− S(aj )
S(aj−1)

= 1−
exp
[
−
∫ aj

0 [θA(t)+θB(t)]dt
]

exp
[
−
∫ aj−1

0 [θA(t)+θB(t)]dt
]

= 1− exp

[
−
∫ aj

aj−1
[θA(t) + θB(t)]dt

]
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Additional Topics ICR models

ICR model
(Interval-censored data)

using the result that θ(t) = θA(t) + θB(t)

hA(j) = 1− exp

[
−
∫ aj

aj−1
θA(t)dt

]

hB(j) = 1− exp

[
−
∫ aj

aj−1
θB(t)dt

]
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Additional Topics ICR models

ICR model
(Interval-censored data)

it follows that

h(j) = 1− {[1− hA(j)][1− hB(j)]}

or

1− h(j) = [1− hA(j)][1− hB(j)]

Thus the overall discrete hazard is not the sum of the
destination-specific hazards (cf earlier)! Separability result as in cts
time no longer holds in general!

Overall hazard for each interval
= 1− {probability not exited in the interval by either a or b}
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Additional Topics ICR models

ICR model
(Interval-censored data)

Multiplying out the terms in expression, we have

h(j) = hA(j) + hB(j) + hA(j)hB(j)

≈ hA(j) + hB(j) if hA(j)hB(j) ≈ 0

More like cts time case, the smaller the h
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Additional Topics ICR models

ICR model
(Interval-censored data)

Now consider relationship between the survivor function for exit to
any destination, and survivor functions for exits to each destination.

S(j) = (1− h1)(1− h2)(. . .)(1− hj)

= (1− hA1)(1− hB1)(1− hA2)(1− hB2)

× . . .× (1− hA2)(1− hBj)

= (1− hA1)(1− hB2)(. . .)(1− hAj)

×(1− hB1)(1− hB2)(. . .)(1− hBj)
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Additional Topics ICR models

ICR model
(Interval-censored data)

in other words,

S(j) = SA(j)SB(j)

So there is a factoring of the overall survivor function, exactly as in
the continuous time case!

What, then, is expression for each likelihood contribution?
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Additional Topics ICR models

ICR model
(Interval-censored data)

3 types of contribution (as before)

Censored spell:

LC = S(j) = SA(j)SB(j)

=

j∏
k=1

[1− hA(k)][1− hB(k)]
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Additional Topics ICR models

ICR model
(Interval-censored data)

Exit to destination A:

We need an expression for the joint probability that had completed
spell of type exit-to-A in interval j, and that latent exit time to
destination B was after that for A.

For an exit to A in the jth interval, the expression is . . .
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Additional Topics ICR models

ICR model
(Interval-censored data)

LA = Pr(aj − 1 < TA ≤ aj ,TB > TA)

=

∫ aj

aj−1

∫ ∞
u

f (u, v)dvdu

=

∫ aj

aj−1

∫ ∞
u

fA(u)fB(v)dvdu

=

∫ aj

aj−1

[∫ aj

u
fA(u)fB(v)dv +

∫ ∞
aj

fA(u)fB(v)dv

]
du
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Additional Topics ICR models

ICR model
(Interval-censored data)

where f (u, v) is the joint probability density for latent spell lengths
TA, TB , and

u, lower integration point in second integral is (unobserved) time
within the interval when exit to A occurred, and we also assumed
independence of competing risks, so
f (u, v) = fA(u)fB(v)

We cannot proceed further without making some assumptions about
the shape of the within-interval density functions (or hazards)!
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Additional Topics ICR models

ICR model
(Interval-censored data)

Five main assumptions about shape of within-interval
density/hazard:

1 transitions can only occur at the boundaries of the intervals.
2 destination-specific density functions are constant within each interval

(though may vary between intervals),
3 destination-specific hazard rates are constant within each interval

(though may vary between intervals).
4 the hazard rate takes a particular proportional hazards form

(‘proportional intensities’)
5 the log of the integrated hazard changes linearly over the interval.

Focus here on (1), (2), and (3)
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Additional Topics ICR models

ICR model
(Interval-censored data)

1. Transitions only occur at interval boundaries (Narendranathan/Stewart,

1993)

If transitions can only occur at interval boundaries then, if a
transition to A occurred in interval j = (aj − 1, aj ], it occurred at date
aj , and it must be the case that TB > aj (i.e. after interval j).

→ This, in turn, means that fB(v) = 0 between dates u and aj . ⇒ big
simplification of LA (ie second term = 0):
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Additional Topics ICR models

ICR model
(Interval-censored data)

LA =

∫ aj

aj−1

∫ ∞
aj

fA(u)fB(v)dvdu

=

∫ aj

aj−1
fA(u)du

∫ ∞
aj

fB(v)dv

= [FA(aj)− FA(aj − 1)][1− FB(aj)]

= hA(j)SA(j − 1)SB(j)

=
[

hA(j)
1−hA(j)

]
SA(j)SB(j)

by similar arguments, we may write

LB =
[

hB(j)
1−hB(j)

]
SA(j)SB(j)
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Additional Topics ICR models

ICR model
(Interval-censored data)

Overall likelihood contribution for person with spell length of j
intervals:

L = (LA)δ
A

(LB)δ
B

(LC )1−δA−δB

=
[

hA(j)
1−hA(j)

]δA
SA(j)

[
hB(j)

1−hB(j)

]δB
SB(j)
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Additional Topics ICR models

ICR model
(Interval-censored data)

Separability result analogous to that for continuous time ICR model!
So can estimate using destination-specific models.

But how realistic is the assumption of transitions only occurring at
the interval boundaries?

2. Destination-specific densities constant within intervals (Dolton & van

der Klaauw, REStat, 1999)

fA(u)fB(v) = f Aj f Bj
given u, v in interval j
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Additional Topics ICR models

ICR model
(Interval-censored data)

Lengthy manipulations show that LA = :

LA = 1
2 [Pr(aj − 1 < TA ≤ aj) Pr(TB > aj − 1)]

+ 1
2 [Pr(aj − 1 < TA ≤ aj) Pr(TB > aj)]

=
[

hA(j)
1−hA(j)

]
SA(j)× 1

2 [SB(j − 1) + SB(j)]

=
[

hA(j)
1−hA(j)

]
SA(j)× SB(j)

2

[
1

1−hB(j) + 1
]

=
[

hA(j)
1−hA(j)

]
SA(j)SB(j)

[
1− hB (j)

2
1−hB(j)

]
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Additional Topics ICR models

ICR model
(Interval-censored data)

I.e. assumption leads to an expression with nice interpretations:

(1) the two component probabilities in LA provide bounds on the
joint probability of interest and we simply take the average of them;

(2) This in turn involves a simple averaging of survival functions that
refer to the beginning and end of the relevant interval
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Additional Topics ICR models

ICR model
(Interval-censored data)

Overall likelihood contribution for individual:

L = (LA)δ
A

(LB)δ
B

(LC )1−δA−δB

=
[

hA(j)
1−hA(j)

]δA [ 1− hB (j)

2
1−hB(j)

]δA
SA(j)

×
[

hB(j)
1−hB(j)

]δB [ 1− hA(j)

2
1−hA(j)

]δB
SB(j)

Not separable; need special program

NB similarity/difference with earlier case: an extra term here.
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Additional Topics ICR models

ICR model
(Interval-censored data)

3. Destination-specific hazards constant within intervals (i.e. survival times

Exponential within each interval)

θA(t) = θAj if aj − 1 < t ≤ aj , and

θB(t) = θBj if aj − 1 < t ≤ aj , implying

θ(j) = θAj + θBj , if aj − 1 < t ≤ aj
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Additional Topics ICR models

ICR model
(Interval-censored data)

One obvious parameterisation would be

θAj = exp(β0Aj + β1AX1 + β2AX2 + . . .+ βKAXK ), and

θBj = exp(β0Bj + β1BX1 + β2BX2 + . . .+ βKBXK )

I.e. each destination-specific hazard rate has a piece-wise constant
exponential (PCE) form.

SHP Methodological Workshop (PFerreira) Survival Analysis using the SHP July 2016, UoLausanne 241 / 244



Additional Topics ICR models

ICR model
(Interval-censored data)

In this case, the likelihood has a very similar shape to that for the
‘multinomial logit’ model for intrinsically discrete time:

L3 = S(j)
(

h(j)
1−h(j)

)δA+δB

×
(

θAj
θAj+θBj

)δA (
θBj

θAj+θBj

)δB
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Additional Topics ICR models

ICR model
(Interval-censored data)

If intervals are short, or interval-hazards are relatively small then, the
more likely it is that

hA(j) ≈ θAj , hB(j) ≈ θBj

In this case, the ‘multinomial model’ will provide estimates that are
similar to the interval-censoring model assuming a constant hazard
within intervals (and also assuming that each uses the same
specification for duration dependence in the discrete hazard).
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Additional Topics ICR models

ICR model
(Interval-censored data)

Extensions:
1 Left-truncated spells

ICR models for interval-censored and left-truncated survival data can
be easily-estimated using the same programs as for random samples of
spells, applied to data sets in which data rows corresponding to the
intervals prior to the truncation point have been excluded

2 Correlated risks

The models discussed so far can be extended to allow for unobserved
heterogeneity: individual-specific error terms in each
destination-specific risk that are correlated across risks (see Lecture
Notes)
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